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ABSTRACT

Mollo, Christopher Gerard. M.S.M.E., Purdue University.

August 1987. A Numerical Method For Analyzing The Optimal

Performance Of Active Noise Controllers. Major Professor:

Dr. R.J. Bernhard, School of Mechanical Engineering.

An

analyzed for three

The first

enclosed

the noise

description

by either

conditions.

control of the free

noise source with

The third problem

enclosed or

the noise

description

optimal active noise controller is formulated and

different active noise control problems.

problem formulated is the active control of

or partially enclosed harmonic sound fields where

source strengths and enclosure boundary

are known. The enclosure boundary is described

pressure, velocity, or impedance boundary

The second problem formulated is the active

field power radiated from a distributed

a known time harmonic surface velocity.

formulated is the active control of

partially enclosed harmonic sound fields where

source strengths or enclosure boundary

may not be known. All three formulations are

derived using an indirect boundary element technique.

Formulation and verification of an indirect boundary

element method is presented. The active noise controller

formulations for enclosures are capable of analyzing



xix

systems with generalized enclosure shapes, point noise

sources, and/or locally reacting impedance boundary

conditions. For each formulation, representative results

of optimal active noise controller case studies are

presented, and some general conclusions are drawn.



CHAPTERI

INTRODUCTION

Individuals are subjected to sound practically every

moment of the day. The various sounds one encounters

throughout the day can be classified into two general

categories: (I) desired or welcomed sound or (2) unwanted

sound or noise. It has long been recognized that noise can

dramatically affect many aspects of human llfe. There has

been much attention paid to the study of noise and its

effects on people. Research has been conducted on the

effects of noise on such aspects as blood pressure, hearing

loss, sleep disturbances, cardiovascular systems,

maternity, occupational stress, and auditory fatigue. Most

of the literature addresses the problem of noise in the

work place or noise in transportation vehicle passenger

compartments. Excessive noise in the work place generally

reduces employee productivity and is sometimes considered a

health hazard. Likewise, a passenger's comfort level is

adversely affected by excessive passenger compartment

noise. Consequently, methods of reducing noise continue to



be studied wlth significant interest.

For the most part, noise is attenuated by means of

passive methods. Passive methods either absorb energy from

the acoustic system through the use of materials such as

foams or block the transmission of acoustic energy with

barriers. Nhen the wavelength of the sound is small (i.e.,

the frequency is high), passive methods perform quite well.

However, passive methods are inefficient when

of relatively low frequency noise is desired.

sound absorbing surfaces or heavy barriers are

effectively attenuate low frequency noise.

attenuation

Very thick

needed to

On the other hand, active noise attenuation methods

perform best in the relatively low frequency regime (below

500 Hz) [I]. The concept of active noise attenuation was

first documented by Paul Lueg in his 1934 U.S. Patent [2].

Lueg's concept of active noise attenuation is based on the

principle of destructive interference of sound waves. The

noise in the environment is attenuated by introducing

additional sound energy of an appropriate form into the

system. In general, the functional mechanisms of active

noise attenuation are not as simple as Lueg described and

to this day are not completely understood.

The objective of the research presented in this thesis

is to develop a generalized numerical technique for

evaluating the optimal performance of active noise



controllers. Most of

controllers to date has been

one-dlmensional

propagation. Some

noise controllers

systems has been reported. Analysis

dlmenslonal acoustic systems has

regularly shaped geometries such

rectangular prisms. However, some

applications for active noise control

systems with irregularly shaped

noise fields such as aircraft

passenger compartments. As the

the analysis of

analytically

active noise

performed for

acoustic systems with plane wave

analytlcal/numerlcal analysis of active

for two and three-dimensional acoustic

of two and three-

been restricted to

as cylinders and

of the desired

involve acoustic

boundaries and complex

cabins and automobile

geometry and thus, the

noise field becomes

derivation of an optimal active

unrealistic. Hence, a need exists

method for the evaluation of

controller for the generalized

increasingly complex, analytical

noise controller becomes

for a numerical analysis

an optimal active noise

acoustic system.

Three numerical active noise controller optimization

formulations were developed during the course of the

research. The formulations were developed for different

system configurations and assumptions. All formulations

were Implemented using an indirect boundary element method.

The first formulation solves for the optimal transfer

function between the noise source(s) and the controller

actuator(s) which minimizes a performance criterion. The



analysis is performed for cavity active noise control

problems where complete descriptions of the noise sources

and cavity boundary are known. The second formulation

solves for the optimal transfer function between the noise

source and the controller actuator(s) such that the free

field power radiated from the system is minimized. A

surface velocity description of the noise source is assumed

to be known. The third formulation is similar to the first

except that no prior knowledge of the noise source

magnitudes and phasing is assumed. The magnitude and

phasing of the noise source(s) is deduced at measurement

locations. The third formulation calculates an optimal

transfer function between the measurement locatlon(s) and

the controller actuator(s) such that a performance

criterion is minimized.

The

presents

for one-dimenslonal

development and

element method is

presents

where the

thesis is organized as follows. Chapter 2

a literature review on active noise controllers

and three-dlmenslonal systems. The

verification of an indirect boundary

contained in chapter 3. Chapter 4

the development and results for the cavity problem

noise source(s) and boundary description are

known. The development and results for the free field

radiation problem are discussed in chapter 5. The

development and results for the cavity problem where the

noise source(s) are of unknown value are discussed in



chapter 6. Conclusions and recommendations for further

work are presented in chapter 7.



CHAPTER 2

LITERATURE REVIEW

Due to the capability of digital control systems,

research investigations of active noise control (ARC) has

been conducted wlth renewed emphasis over the last few

years. Because this renewed interest in ANC is relatlvely

young, there are only a limited number of researchers

heavily involved in the field. However, a substantial body

of literature is accumulating on the subject. This chapter

provides a general summary of articles relating to the

research presented in this thesis. Firstj a brief

historical development of active noise controllers is

presented.

enclosures

discussed. Finally, some

from the literature review.

Second, articles pertaining to ANC problems in

and articles addressing ARC in free space are

overall conclusions are drawn

2.1 Historlcal Development Of Active Noise Controllers

In 1934

subsequently

Paul Lueg filed for a patent which was

granted to him in 1936 as Patent No.



2,043,416, "Process of Silencing Sound Oscillations" [2].

Lueg's patent is generally _ecognlzed as the first document

on the process now labeled as active noise control. In

Lueg°s patent_ he made prsctlcal use of the well known

phenomenon of superposltlon of linear systems. For linear

acoustic systems, the principle of superposltlon states

that the acoustic response at a point in space is the sum

of the acoustic responses at that point due to a number of

individual sources. The principle of superpositlon is the

basis for the phenomenon of constructive and destructive

interference of acoustic waves. Lueg suggested that noise

could be attenuated through destructive interference by

artificially introducing additional sound into the system.

Lueg outlined the process of using destructive

interference to eliminate noise for several situations.

The first situation Lueg consldered was a one-dlmenslonal

wavegulde containing noise at a single frequency. The

active noise controller consisted of a microphone, an

amplifier, and a loudspeaker located downstream of the

microphone. The noise in the wavegulde was detected by the

microphone, amplified, delayed, and reintroduced back into

the waveguide by the loudspeaker, The electronic system

(amplifier) delays the microphone signal such that the

o
sound introduced by the loudspeaker is 180 out-of-phase

with the noise at the loudspeaker location. Thus,



destructive interference results, and the noise does not

propagate beyond the loudspeaker. Many of the modern

active noise control solutions for plane waves in a one-

dlmenslonal wavegulde (duct) are essentlally based on

Lueg's original concept. The second situation was that of

a slnusoldal point noise source in free space. The

detector microphone and cancellation loudspeaker were

positioned equidistant from the noise source (but not

necessarily at the same locatlon). The output of the

microphone is phase inverted and immediately Inputed to the

loudspeaker, A cancellation region in the near field of

the loudspeaker results. The third situation considered

non-slnusoidal noise. For non-slnusoldal noise, the

would be detected at the loudspeaker location,

inverted, and reintroduced at the loudspeaker.

noise

phase

Because the electronics were not adequate at the time

of Lueg's patent, he was unable to implement his ideas and

there was no demonstrated progress in the field of active

noise control until Harry Olson published his "electronic

sound absorber" in 1953 [3]. Olson furthered his ideas in

a publlcatlon in 1957 [4].

advanced enough that Olson was

hardware and performing

The electronics field had

successful in developlng

some Inltial laboratory

experiments. Olson's "sound absorber" was a loudspeaker

enclosed in a cabinet with a microphone positioned directly



in front of the loudspeaker. The output of the microphone

drove the loudspeaker via an amplifier. Olson's system

created a "zone of silence" in front of the absorber.

01son was able to attain a maximum of almost 25 dB of

reduction at the microphone location with greater than I0

dB of reduction from 30-210 Hz. However, performance

degraded rapldly for locations away from the microphone.

Olson's device did show promising results for the

limitations of the electronics avallable in the 1950"s.

Also during the mid 1950"s, N.B. Conover investigated

the possibility of reducing electronic transformer hum by

active means [5,6,7]. Conover used loudspeakers in

cabinets positioned near the transformer's encasing to

cancel the near-fleld acoustic pressure radiated from the

transformer. Using a 15,000 kVA transformer, Conover

obtained almost 30 dB reduction at 50 feet and I0 dB at 125

feet along the transformers axls [8]. However, Conover's

active noise controller caused the near-fleld pressure to

increase at other angular positions about the transformer.

Due to the mixed successes of Olson and Conover, the

investigations of ANC were limited during the late 1950"s

and early 1960"s. A new accelerated interest

developed in 1968 with the publlcatlons of M.J.H.

and his coworkers in France. Narnaka defines the

era of ANC as beginning with Jessel's work [I].

in ANC

Jessel

modern

Narnaka
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suggests three reasons for the renewed interest

noise control:

in active

- advanced control systems technology including the

development of adaptive systems,

- improved comprehension of the physics

acoustical systems, and most importantly

of

- the availability of sophisticated, inexpensive

control made possible by solid state electronlcs.

The works of Jessel and others, delineating "the modern

era," will be discussed in detail in the next sections.

2.2 Active Noise Control In Enclosures

The field of active noise control can be divided into

two categories: control of noise in enclosures, and control

of noise in free space. A special case of active noise

control in enclosures occurs when the noise propagates in

only one dimension of the enclosure at the highest

frequency considered. This special case is often referred

to as active noise control for one-dimenslonal ducts and is

conceptually the simplest active noise control problem.

Consequently, the active attenuation of noise in one-

dimensional ducts has received the greatest attention.
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2.2.1 One-Dimenslonal Enclosures

The acoustic one-dlmensional system is a long, rigid

wall duct where the transverse dimensions of the duct are

smaller than half the wavelength of the highest frequency

considered. Consequently, acoustic waves (plane waves)

travel only in the longitudinal direction. A typical

schematic of a one-dlmenslonal active noise control system

is shown in Figure 2.1. The noise In the duct is generated

by a source "upstream" and travels toward the right. The

one-dlmenslonal enclosure is applicable to such systems as

air conditioning, heating, and ventilation ducts were the

noise source is usually an axial fan or muffler and engine

induction systems.

DIRECTION OF

INCIDENT NOISE
>

DETECTOR

MICROPHONE C

DOWNSTREAM

) >

CONTROLLER [

y CANCEUNGSOURCE

Figure 2.1 - General Schematic Of A 0ne-Dimenslonal Active
Noise Controller



12

Researchers A.R.D. Curtls, P.A. Nelson, S.J. Elllott,

and A.J. Bullmore have analytlcally investigated the active

control of one-dlmenslonal enclosed sound flelds [9,10].

The model used was a long, thin tube with rigid ends. A

noise (primary) source of known strength was located at the

left end of the tube and a canceling (secondary) source was

located at the right end. A transfer function between the

primary source strength and the secondary source strength

was analytically derived in the frequency domain for three

control strategies. The first control strategy considered

was the acoustic virtual earth. The acoustic virtual earth

requires that the secondary source is driven such that a

pressure null is created directly in front of the secondary

source. The second strategy investigated was the absorbing

termination, The absorbing termination requires that the

secondary source is driven such that no reflections occur

at the secondary source. The last control strategy is

referred to as an optlmal termination. The method of an

optimal termination requires that the secondary source is

driven such that the total acoustic energy in the enclosure

is minimized. Of the strategies considered, the optimal

termination provided the greatest reduction in the acoustic

energy. However, the optimal termination required

noncausal action of the secondary source while the other
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two strategies were causal. A noncausal solution was

deemed acceptable only if an a priori measurement of the

primary source strength is available or when the excitation

is periodic.

Curtis et al. arrived at some important conclusions in

study of one-dlmenslonal systems. It was concludedtheir

that minimization of the acoustic potential energy is a

more suitable method than minimization of the total

acoustic energy if sound pressure is the quantity to be

reduced. The secondary source was shown to be most

effective when it was positioned at a pressure antlnode.

If a single secondary source is well located, it is able to

cancel most of the resonant sound field and additional

secondary sources are unnecessary. The greatest reductions

in the acoustic potential energy attained with the optimal

termination occurred at the resonant frequencies of the

duct. At the duct antlresonsnt frequencies, no reduction

in the acoustic potential energy was possible.

S.J. Elllott and P.A. Nelson analytically investigated

impllcatlons of causallty for the one-dlmenslonalthe

system [II], The system considered was composed of a

detector microphone upstream of a secondary source. The

detector microphone measured the incident traveling plane

waves originating from a noise source. The output of the

detector microphone was input to a controller with transfer
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function T (_). The controller drives the
i

source. Causallty was determined by examining the

Fourier transform of Ti(_). Damping in the

secondary

inverse

duct was

accounted for by using a complex wavenumber. The first

case considered Tj(_) such that no sound propagated past

the secondary source. For the first case, the impulse

response function of TI(_) was causal and infinite in

duration. For the second case, Ti(_) was solved such that

the total sound power in the duct was minimized (i.e., to

control the travellng waves in both directions). For the

second case, the controller impulse response function had a

causal and a noncausal part. If the controller was

constrained to be causal, the optimal causal controller

turned out to be the causal portion

controller. Thus, even for

optimal causal controller does

some amount of attenuation.

of the

a noncausal

exist which

unconstrained

situation, an

will provide

An appllcatlon of the acoustic vlrtual earth for

attenuating broadband noise in an open ended duct with no

flow was described by M.C.J. Trlnder and P.A. Nelson [12].

The active noise control system was composed of a detector

microphone, controller,

controller was designed

loop transfer functions.

active

and a secondary source. The

by experimentally measuring open

A well recognized problem of

noise controllers is that the acoustic interaction
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between the canceling source and the detector microphone

can cause instability of the control system. To alleviate

the acoustic feedback problem between the secondary source

and the detector mlcrophone, Nelson and Trinder placed the

detector microphone in the near field of the secondary

source at a position of minimum near-fleld response. The

position of minimum near-field response was determined by

an Iteratlve experimental procedure. The first three modes

of the duct were attenuated up to a maximum of 20 dB. The

control system was band limited to 400 Hz and below.

Researcher C.Fo Ross experlmentally investigated the

cancellation of plane waves in a duct [13]. The active

noise control system used by Ross was similar to that of

Trlnder and Nelson.

square cross section

random noise input

A duct 10m long and having a 50cm

was driven by a loudspeaker with

at one end of the duct. The duct was

open at the other end. The incident plane waves were

detected by a three microphone array. The three microphone

array provided the ability to detect only forward traveling

waves thus eliminating the acoustic feedback problem, The

secondary source was a loudspeaker built into a wall of the

duct at a location downstream of the detector array. An

observer mlcrophonep positioned downstream of the secondary

source_ was used to evaluate performance. The controller

transfer function was designed in the frequency domain with
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the objective of canceling all sound past the secondary

source. The controller was a digital filter whose

coefficients were determined by the least squares method of

system identification. Ross* system provided approxlmately

15-20 dB of attenuation over the frequency range 60-300 Hz

with peaks as high as 35 dB.

In a landmark paper, M.A. Swlnbanks analyzed the very

complex and general problem of active noise control in a

long duct with uniform flow [14]. Swlnbanks was interested

in finding a Iocallzed distribution

located about the. duct wall such

disturbances propagating downstream

attenuated. Swlnbanks" approach to the problem was an

depth fluid dynamics analysls from

of point sources

that plane wave

in the flow would be

In-

which he arrived at

several conclusions. An array of two separated source

"rings" would generate plane waves in one direction only.

The unidirectional property of such an array was deemed

benefJclal in avoiding the instability problem. Swlnbanks

states that for a circular duct, three sources should be

used in each source ring, while for a rectangular duct four

sources are needed per ring. Likewise, a unidirectional

detector array can be formed by two rings of microphones.

Swlnbanks also notes that the effect of cross modes at the

detector can be eliminated if such a directional sensor is

used. The useful frequency range for the two-rlng source
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array was
1

calculated to be 2-x octaves.

that by adding a third ring of sources

It was also found

to the canceling

array, the useful frequency range increased by two octaves.

In a later paper, Swlnbanks discusses many general

aspects of active noise and vibration control and reviews

some current applications [1S]. One particular aspect

discussed by Swlnbanks is the stability of a general active

noise controller. The configuration Swinbanks discussed

was origlnally proposed by Nanke [16]. Wanke proposed that

the canceling source/detector interaction could be

electronically subtracted out of the detector output. The

transfer function between the canceling source and the

detector would be measured a priori and electronically

implemented as a filter. The input to the canceling source

would be the input to the filter. The output of the filter

is subtracted from the detector output. Thus, the input to

the controller would contain only the noise source

component of the response at the detector. The obvious

disadvantage to Wanke's approach is that the system will go

unstable if the canceling source/detector transfer function

ever changed.

Researchers T. Enoklda et al. [17] and M. Takahashl et

al. [18] have proposed an active noise control system for

one-dlmensional ducts called the dual sensing microphone

(DSM) system. The DSM system is a method for eliminating
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the acoustic feedback between the canceling source and the

detector microphone. Two microphones are positioned

equidistant from the secondary source. One microphone is

located upstream from the canceling source while the other

is located downstream. The acoustic feedback component of

the total signal is eliminated by subtracting the output

slgnal of one microphone from the other. Hence, the

controller input is the difference of the two microphone

signals. The DSH system was demonstrated using a duct

0.35m x 0.35m x 13m. The duct .was driven at one end by a

loudspeaker with 20-1000 Hz white noise input. Attenuation

levels of 15 dB or more were achieved over a frequency

range of 70-700 Hz.

A system similar to the DSM

dipole"

[19,20].

sources

system is the

developed by H.G. Leventhall and Kh.

The Chelsea dipole

a distance d apart.

"Chelsea

Eghtesadi

system uses two canceling

The detector microphone is

positioned centrally between the two canceling sources.

o
The two cancellng sources are driven 180 out-of-phase.

Thus, the components of the acoustic response at the

microphone location due to each source cancel, and

theoretically no acoustic feedback will occur. The Chelsea

C

dlpole is "tuned" to a central operating frequency, fo'_-'
O

X

by choosing d-_. Experimental analysis of the Chelsea

dipole showed a significant level of attenuation
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(approximately 25 dB) was possible around the central

operating frequency, but only about I0 dB of attenuation on

average was achieved at frequencies away from f . Nonldeal
O

factors such as cross modes and irregular frequency

response of the speakers were found to degrade the

performance of the Chelsea dipole.

In addltlon to the Chelsea dipole system, researchers

W.K.W. Rong, Kh. Eghtesadl, and H.G. Leventhall have

theoretically and experlmentally investigated the

performance of tlghtly-coupled active noise control systems

[21]. Most duct noise attenuator systems have the feedback

(detector) microphone and the cancellng source separated by

a relatively large distance. Hong et al. have proposed two

systems, a tlght-coupled monopole (TCM) and a tlght-coupled

tandem (TCT), where the feedback mlcrophone(s) is located

in the near field of the cancellng source(s). The TCT is

two TCMs in series. The idea of tlghtly-coupled systems

can be traced back to 01son [3]. As was the case for the

Chelsea dipole, cross modes and nonideal system components

caused a decrease in performance of the tlghtly-coupled

systems. In order to reduce the effects of higher order

(cross) modes, Hong et al. placed an absorptive lining

opposite the canceling source(s).

The TCM was originally known as the Chelsea monopole

[22,23]. Hong et al. modeled the transfer functions of the
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canceling sourceldecector interaction and controller for

the classic monopole attenuator (Figure 2.1) as simple time

delays. The Chelsea monopole had two dlstlncClve features.

First, the canceling source/detector interaction was

electronically subtracted out of the detector output (as

proposed by Nanke). Second, the detector microphone was

located in very close proxJmlty to the canceling source.

Because the detector was very close to the canceling

source, the time delays were assumed to be zero, and thus,

the transfer functions were simply unity gains.

Consequently, the overall controller transfer function

(including the subtraction of the source/detector

Interactlon)approached infinity, which Hong et al. noted

was equivalent in practice to a hlgh gain amplifier.

Hence, the TCM is simply a microphone, a power amplifier,

and a canceling source.

Expressions for the attenuation at a

downstream of the canceling source were

derived for the TCM and the TCT systems.

field point

analytically

The incident

noise in a duct (of rectangular cross section) was assumed

to be low enough in frequency that plane wave behavior

could be assumed. However, since the feedback microphone

was in the canceling source near field, plane wave behavior

could not be assumed in calculations involving the pressure

at the feedback microphone. To calculate the contribution
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of the pressure at the feedback microphone due to the

canceling source(s), Green's function for radiation in a

finite space with reflectlon coefficients was used. For

the absorptive linings the reflectlon coefficient was

included for a locally reacting material.

Experimental verification of the analytical results

was performed at discrete frequencies of 98 Hz, 155 Hz, and

216 Hz by Hong et al. The duct had dimensions 0.45m x 0.6m

x lOm. The quantity examined for verification purposes was

the level of attenuation over a plane (perpendicular to the

axis of the duct). The experimental results supported the

analytlcal results in general. The performance of the TCT

and TCM for broadband random noise band llmlted from 0-500

Hz was determined. The TCT provided sllghtly better

performance with a 20 dB minimum attenuation level over

three and one-half octave bands from 30-330 Hz.

The appllcabillty of superposltlon for active noise

control systems has been debated among certain researchers.

J.E. Ffowcs Williams et al. [24] argue that the impedance

that the control source encounters changes when the noise

sources are present. Thus, if an optlmal active noise

controller transfer function is in part found by

experlmentally measuring various system transfer functions

with the noise source inactive, the controller transfer

function will suboptimal when the noise source is
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operating. However, H.A. Swlnbanks considers Ffowcs

WJlllams" argument to be false [15]. Swlnbanks argues that

the experimentally measured transfer functions are

Invarlant functions regardless if a noise source is present

or not. Swlnbanks states that the change in impedance that

the canceling source encounters when the noise source is

operating is accounted for by the ratio of the cancellatlon

polnt/nolse source and detector/nolse source transfer

functions. R.J. Silcox and S.J. Elllott support Swlnbanks"

argument by analytically illustrating that for finite

impedance sources, the principle of superposltlon is

appllcable for the active noise control problem [25].

Researcher R.D. Ford has analytically investigated the

power requirements for one-dlmenslonal active noise control

systems [26,27]. Ford considered two active noise control

system arrangements. The first system employed a single

ring of canceling sources which were driven such that the

acoustic pressure was zero downstream of the ring.

Upstream of the canceling sources a standing was formed.

Because the acoustic pressure near the ring of canceling

sources was zero, no power could flow into or out of the

canceling sources.

internally absorb

Ford hypothesises

work: (I) the canceling sources inhibit

However, the canceling sources did

power electrlcally and mechanlcally.

two explanations on the mechanisms at

the noise source
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from radiating power because the radiation impedance of the

primary source had become totally reactlveD or (2) the

noise source power is dJsslpated in the section of the duct

between the noise source and the canceling sources.

Ford also considered a system with a unidirectional

dipole absorber. A unldJrectlonal dipole is created by

situating two rings of canceling sources a distance d apart

(Swlnbanks" proposed system). The upstream ring (ring 2)

is driven with the same amplitude as the downstream ring

(ring I) but with the signal inverted and delayed by d/c

where c is the speed of sound. For the unidirectional

dipole, the noise fleld upstream of ring 2 is unaffected, a

standing wave is formed between the two canceling rings,

and the pressure is zero downstream of ring I. Ring 2 was

found to absorb power while ring I had zero power flow.

Hence, it is possible to remove power from the system if a

unidirectional dipole is used as the canceling source.

Ford performed several experiments where the acoustic power

input of the canceling source(s) was monitored. The

experlmental results reinforced the theory.

2.2.2 Two And Three-Dimenslonal Enclosures

A significant body of research of relevance to the

research presented in this thesis has been conducted by

A.J. Bullmore, S.J. Elllott, P.A. Nelson, and A.R.D. Curtis
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[28,29,30]• Bullmore et al. have investigated the active

control of harmonic enclosed sound fields. Because

pressure is the acoustic parameter sensed by humans, the

selected control objective was to minimize the total time

averaged acoustic potential energy, E
P

of volume V, E is given by
P

For an enclosure

E I V 2 S Ip(x,_)[ 2 dV (2.1)
P c v

4P o

I

where p(x,_) is the time harmonic acoustic pressure at a

location described by x. The quantity p(x,_) is written as

a truncated sum of the normalized characteristic modal

functions of the enclosure and the complex mode amplitudes.

The complex mode amplitudes were written as a sum of

two components. The first component was the contribution

of some unspecified noise (primary) source distribution.

The second component was the contribution of a set of point

canceling (secondary) sources which were employed to

control the noise field• Due to the orthogonal properties

of the mode shapes, when the solution for p(x,_) is

substituted into equation 2.1, an expression for E results
P

which is a positive definite, quadratic function of the

complex secondary source strengths. A positive definite

quadratic function has a single unique global minimum.

Thus, there exists a unique combination of secondary source
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magnitudes and phasing such that E is minimized•
P

Because minimization of E requires exact knowledge of
P

the pressure distributions due to the primary and secondary

sourcesD Bullmore etal. have proposed a more practical

control objective• The practical control objective they

have proposed is to minimize the sum of the pressure

magnitudes squared at a discrete number (N) of sensor

locations:

N
V

- z IPnl
JP 4P c2N n=l

O

(2.2)

Hinlmlzation of J does not guarantee minimization
P

In fact, Bullmore etal. point out that that E
P

increase at minimum J . As N approaches
P

minimization of J converges to minimization of E
P

of E
P

may even

infinity,

P

Bullmore etal. performed computer simulations for a

two-dlmenslonal harmonically enclosed sound field [28]. A

lightly damped rectangular cavity was excited by a single

harmonic primary point source operating at low frequency

(50-300 Hz). The primary source was modeled as a small

rectangular piston mounted in the enclosure surface. The

secondary sources (at various locations in the cavity) were

likewise modeled as small rectangular pistons mounted in

the enclosure surface.
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Several important concluslons can be drawn from the

computer simulations of Bullmore et al. Firsts the largest

reductions in E were attained when the secondary source
P

was in close proximity to the primary source. Second,

appreciable reductions in E are possible even if the
P

secondary sources are remote from the primary source

provided that the secondary sources were located at maxima

of the uncontrolled sound fleld. Third, for remotely

located secondary sources, the significant reductions in E
P

occur around the acoustic resonances of the cavity.

Fourth, minimization of 2 was approximately equivalent to
P

minimization of E as long as the sensor locations were
P

chosen such that all of the dominant modes were detected.

The computer simulation findings

were verified experlmentally [29].

conducted using a shallow rectangular

to that modeled in the

experimental results were in

simulation predictions.

of Bullmore et al.

The experiments were

enclosure identical

computer simulations. The

close agreement with the

A.J. Bullmore, P.A. Nelson,

applied their formulation to

excited cyllndrlcal enclosed

cyllndrical enclosure is

approximates an aircraft

simulation was performed

and S.J. Elllott have also

the study of harmonically

sound flelds [31]. A

of interest because it

passenger cabin. A computer

for a thin, closed cyllndrlcal
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shell excited by two harmonic external point forces of

equal magnitude and phase. The secondary sources were

modeled as small piston sources on the cylindrical surface.

The acoustic response (noise fleld) of the cavity was

assumed to be due only to the structural response of the

cylindrlcal shell. The quantities E and J as defined in
P P

equations 2.1 and 2.2 respectlvely, were used as the cost

functions. At a driving frequency of 132 Hz, 10 secondary

sources provided 5.7 dB of reduction in E . For a similar
P

discretized study using the same I0 secondary sources and

24 sensor locatlons, J was reduced by 4.3 dB. Performance
P

was found to degrade with decreasing numbers of secondary

sources. Bullmore et al. suggested that maximum

minimization of E is achieved by placing the secondary
P

sources where they can most effectively couple into the

dominant modes excited by the primary sources while least

exciting prevlously unexcited modes.

The active control of harmonic noise flelds inside an

aircraft fuselage has also been studied by H.C. Lester and

C.R. Fuller [32]. The aircraft fuselage was modeled as an

inflnltely long, uniform, thin, flexlble cyllnder. A pair

of dlpoles of known amplltude, phase, and placement

external to the cylinder were used to simulate the sound

field created by twin propellers. The dipoles drove the

interior acoustic pressure field through



28

structural/acoustic coupllng. Honopole cancellng sources

were introduced into the interior for noise field control.

A "payoff function", defined as the area weighted mean

square pressure over the propeller plane, was computed from

- 'Zi"A(Pe) _o Ip(r,0)l 2 rdrd0 (2.3)

where A is the cross sectional area at the propeller plane
o

and a is the radius. The amplitudes of the control sources

(P "s) were solved such that the payoff function is

minimized. Coupled shell/acoustlc equations were used to

solve for the acoustic pressures at the propeller plane in

terms of the control source amplitudes. The resulting

payoff function was a positive definite quadratic function

of the control source amplitudes, and thus, a slngle global

minimum was found.

Through computer simulations, Lester and Fuller were

able to arrive as some interesting conclusions. Using only

a few (2 to 8) "_udlclously placed" controllable compact

sources, reductions of 20-25 dB were attained over a

substantial portion of the cylinder's cross section. When

modal density was low, the canceling sources were able to

create an acoustic modal pattern similar to the

uncontrolled acoustic field but opposite in phase. Lester

and Fuller thus concluded that the control sources should

be located such that they are effective in creating the
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antl-phase modal pattern

attenuating the noise.

which is responsible for

Some basic experiments on the active control of noise

in enclosures were carried out by Warnaka et al. [33].

First, noise attenuation in an anechoic environment at 500

Hz was investigated. A noise source (wavegulde) and a

cancellng source (waveguide) were positioned next to each

other in one wall with openings into the anechoic room.

The magnitude and phase of the cancellng source was

manually

achieved.

pressure

adjusted

A maximum

level was

such that maximum attenuation was

of 70 . dB of reduction in sound

achieved locally with 20 dB or more

reduction over approximately 80% of the 25cm x 76cm area in

front of the waveguides.

178cm long and 36cm in

terminations at the ends,

achieved everywhere within the model. The

slnusoldally excited at 400 Hz. Similar

obtained for an excitation frequency of 190 Rz.

Second, for a fuselage model

diameter with near rigid

20 to 35 dB of reduction was

model was

results were

Research by L.Jo Oswald on the attenuation of diesel

engine noise inside passenger compartments using an active

noise control scheme has shown several interesting results

[34]. Actual engine noise was experlmentally attenuated in

a medlum-duty truck cab up to a maximum of 30 dB at the

driver's head location. One speaker located at the front
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lower corner of the cab was used as the canceling source.

The maximum level of noise reduction occurred at the

natural frequencies of the cab. It was also found that

minimum energy for cancellatlon of an acoustic mode is

required if the canceling source was located at an antlnode

of the mode. Work by Oswald also showed that the size of

attenuated region will be at least one-quarter wavelength

for frequencies up to 200 Hz.

Researcher T.$. Berge also experlmentally investigated

the posslbillty of reducing low frequency (below 200 Hz)

noise in a vehicle cab [35]. Berge's goal was to actlvely

attenuate the high noise level of the fundamental engine

firing frequency at Idle speed (30 Hz). An open loop

filter between a feedback microphone and a cancellatlon

speaker was adjusted such that the sound pressure level was

minimized at the driver's head location. The canceling

source was mounted dlrectly behind the driver's head

iocatlon. The sound pressure level at the fundamental

firing frequency was reduced by 15.7 dB. However,

broadband cancellatlon was not achieved, and the sound

pressure level actually increased at other frequencies when

the active noise controller was functioning.

In work similar to that of Oswald and Berge, M. Nadlm

and R.A. Smith addressed the problem of providing a spatlal

zone of attenuation about the driver's head location in a
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tractor cab [36]° Two high efficiency ported loudspeakers

were remotely placed in the foot-rest of a tractor cabin.

A feedback microphone was located just above the operator's

head height. Loudspeakers external to the cab were used to

simulate exhaust noise. Significant reduction in the sound

pressure level occurred at the cab resonances and at very

low frequencies. A typical value was 26 dB at 50 Hzo

2.3 Active Noise Control In Free Space

Researchers P.A. Nelson, A.R.D. Curtis, and S.J.

Elliott have investigated the active attenuation of sound

in an unbounded medium [30]. The objective of their work

was to minimize the total sound power, w, radiated from a

system composed of harmonically time varying point monopole

sources. The total sound power output of the system was

formulated in terms of the primary (noise) and secondary

(canceling) source strengths. The expression for w was

found to be a positive definite, quadratic function of the

complex secondary source strengths. Hence, for multiple

secondary sources, the total sound power function is a

quadratic hypersurface having a single unique global

minimum. It follows that there exists a unique combination

of secondary source magnitudes and phasing which minimizes

W.
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After formulating the problem, Nelson et al.

performed an analytical study of the performance of active

noise control of a single point primary source. Twelve

secondary sources were placed in an icosahedral array about

the primary source. The solution for the complex secondary

source strengths which minimized w required that all

secondary sources be either 180 ° out-of-phase or In-phase

with the primary source. Appreciable reductions in w were

found to be possible only if the secondary sources were no

greater than one-half a wavelength away from the primary

source. Significant improvements in the reduction of w

occurred with an increasing number of secondary sources

within the one-half wavelength criterion.

Nelson etal. also considered the more general case of

sound power absorption of incident plane waves using

compact secondary sources [37]. Expressions for the

secondary source strengths which minimized w were derived

for monopole, dipole and longitudinal quadrapole canceling

sources. The technique used in the development of the

source power equations was developed by Levlne [38]. For a

simple monopole secondary source, it was found that the

secondary source absorbs power and that its volume velocity

must be in antl-phase to the incident plane pressure wave,

The maximum power absorbed for a dipole and a longitudinal
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quadrapole were three times and flve

monopole, respectively.

times that for the

G.A. Manglante and M.J.M. Jessel

theoretical technique for examining

sound In free space [39,40,41]. The technique is

appllcatlon of Huygen°s principle. The technique

formulated for a noise source group which radiates

have developed a

the cancellation of

an

is

into

free space. A surface, Z • is constructed which completely
o

encloses the noise source group and consequently divides

free space Into subspace V I, inside Zo, and subspace V 2,

outside Z . Huygen's principle states that it Is possible
o

to distribute a set of (Huygen) sources over Z such that
O

there will be no radiation into V I and no change In the

sound fleld in V 2. If the Huygen sources are phase

inverted and operate in conjunction wlth the original noise

source group, then the sound fleld in V I wlll be unchanged

and the sound fleld will be zero in V2. Thus, Nanglante

and Jessel proposed that in theory it is possible to

completely cancel a radiated noise fleld (outside of Z o) by

encloslng the noise sources with a surface of phase

inverted Huygen sources (absorbing sources).

Several practical concluslons were drawn by Jessel and

Hanglante from computers studies they conducted. In

practice, only a discrete number of absorbing sources can

be used. The dJscrete absorbing sources must have cardlold
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radiation patterns with the direction of radiation pointing

into the cancellation region. Attenuation was found to

increase with the number of absorbing sources employed.

The absorbing sources should be located close to the noise

source for improved performance. Active absorption

performs well for frequencies below 1000 Hz.

Researcher O.L. Angevlne evaluated an experimental

implementation of Manglante and Jessel"s theory [42].

Angevine was interested in actively attenuating the hum of

an electric transformer. A transformer casing was excited

by a loudspeaker within the casing. The loudspeaker was

operated at frequencies of 125 Hz, 250 Hz, and 500 Hz. The

required cardiold radiation pattern was obtained by using

"trlpoles." A trlpole was defined as a monopole and dipole

operating in close proximity. The amplitude and phase of

each trlpole was adjusted by an automatic control system

such that the pressure at a

front of the tripole was

surrounding the transformer

microphone location 0.Sm in

minimized. Using 26 trlpoles

casing, attenuation at the

microphone locations averaged 16 dB at 125 Hz and 8 dB at

250 Hz. Attenuation was found to increase approxlmately

llnearly with increasing number of trlpoles.

Another application of the free space radiation

problem is the active attenuation of vehicle exhaust noise

which has been experlmentally investigated by M.C.J.



35

Trinder, G.B,B, Chaplin, and P.M. Nelson [43]. Two

canceling speakers with single ports were mounted near an

exhaust outlet. An adaptive control system was used which

adapted to achieve a minimum sound pressure level at a

microphone location near the exhaust outlet. A frequency

range of 0-500 Hz was considered. On a dynamometer test

bed, the relative sound pressure

harmonic of 50 Hz was attenuated by

Although the broadband performance

level at the dominant

more than 25 dB.

of the system was

satisfactory overall, the sound pressure level did increase

slightly at some frequencies. The results were less

encouraging for an on-road test which was conducted. The

relative sound pressure level at the dominant peak (63 Hz)

was reduced by approximately 8 dB. The overall reduction

(0-500 Hz) was 6 dB.

2.4 Conclusions

Several important conclusions can be drawn from the

literature summarized in this chapter. Numerous articles

were cited where active noise control systems were

experimentally shown to provide significant (15 dB or more)

attenuation for a variety of practical applications such as

air conditlonlng/heating ducts, exhaust noise, electronic

transformer hum, and passenger cabin noise. The control of

noise flelds in either an enclosure or free space is

possible using a small number of compact controllable
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sources. For enclosed noise fields, active noise control

is most beneficial at the natural frequencies of the

enclosure. For free space active noise control, the

canceling sources should be located within one-half

wavelength of the primary source. In general, because

passive noise control methods are efficient at the higher

frequencies, active noise control is limited to the low

frequency range (below 500 Hz). _oreover, as the frequency

of the noise increases, computatlonally quicker controllers

ate needed to operate at the required sampling rate.

From the research of Bullmore et al. and Lester et

al., a reasonable control objective for enclosed noise

fields is the minimization of the mean squared pressures at

a number of discrete sensor locations. If a control

objective of a form slmilar to Bullmore et al. or Lester et

al. is used, the control objective equation is a positive

definite, quadratic function

strengths. Therefore, there

secondary source strengths

of the canceling source

is a unique combination of

which provide a global

minimization of the control objective function.

Stability of active noise control systems is a well

recognized problem. Instability is caused by the positive

(acoustic) feedback between the canceling source(s) and the

detector mlcrophone(s). For one-dimenslonal systems,

stability is usually attained by using either directional
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directional cancelingsensors or

dimensional systems, directional sources

less straightforward and other methods

ensure stability.

sources. For higher

or sensors are

must be used to

The analytlcal/numerical procedures for

dimensional systems presented in this chapter

generalized methods. The methods of Bullmore et

higher

were not

al. and

Lester et al. are limited to regularly shaped enclosures

where the characteristic modal functions are known. All of

the analysis for the one-dlmenslonal system were specific

to a particular system or configuration. Because some

desired active noise control applications involve complex

cavJtles (such as an automobile and aircraft cablns), a

generalized method for evaluating an optimal active noise

control scheme is needed.

In

damping,

of noise

require more

evaluate active

addition, critical issues such as the influence of

asymmetric source distributions, and attenuation

near irregularly shaped distributed sources

capable analysis procedures in order to

noise controller performance. However, it

numerical techniques that the physicsis characteristic of

of the modeled

studies cited

understand and

studies.

behavior are less obvious.

in this chapter will

explain the results found

The analytical

be used to help

in the numerical
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CHAPTER 3

THE INDIRECT BOUNDARY ELEMENT METHOD

As will be seen in chapters 4, 5, and 6, derivation of

optimal active noise controllers require a predictive

scheme to calculate acoustic quantities, namely pressure,

in a domain of interest. The domain of interest could be,

for example, the interior of a cavity or the space

surrounding a radiating machine. For simple geometries

possessing one-dimenslonal plane wave acoustic behavior, it

is possible to derive an optimal controller solution

[9,13,14,21]. However, to calculate the optimal controller

for systems with generalized geometries possessing three-

dimensional acoustic behavior, a numerical predictive

scheme is necessary. Multiple parameter optimization and

multi-input, multl-output controller optimization can be

performed with little difficulty if a numerical analysis

method is employed. Hence, for reasons of generality and

versatility, a numerical predictive scheme was used.

For calculation of the acoustical quantities, the

indirect boundary element method (IBEM) was chosen for its
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versatility, relative computational simplicity, and

efficiency. Two other numerical methods could possibly

have been employed: a direct boundary element method (DBEM)

or a finite element method (FEM). The DBEM formulation

results in a matrix equation involving two matrices. The

IBEM formulation results in a matrix equation involving

only one matrix. Thus, the IBEM requires about half the

number of calculations to form the needed matrix equation.

The FEM requires that the complete problem domain be

dlscretized. The IBEM (and DBEM) require that only the

domain boundary be discretized. Thus, the geometric models

of the problem are much larger for the FEM. Moreover, the

FEM provides the solution at every node in the geometric

model of the system whereas the IBEM provides the solution

only at a chosen set of locations in the domain. For the

problem presented in this thesis, the solution is usually

desired at only a few locations. Therefore, use of the FEM

would provide unneeded Information.

Furthermore, the basis functions used in FEMs are

usually polynomials whereas the boundary element methods

use the fundamental solution for a source in free space.

The fundamental solutions for the boundary element methods

are obtained from the governing partial differential

equation of the particular problem at hand. Because the

fundamental solutions are specific to the problem, the IBEM
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and the DBEM provide a more accurate solution with greater

efficiency than the FEM.

The formulation of the IBEM presented in the next two

sections is brief and customized. A more thorough and

general development of the IBEM can be found in Banerjee

and Butterfleld [44], Brebbia and Walker [45], and Kipp

[46].

3. I Theory

The acoustic system to be modeled by

illustrated in F_gure 3.1. The system

domain, D, enclosed by a boundary, B. The

point on the boundary Js given by vector b.

the IBEM is

consists of a

location of a

The method can

also model systems with acoustic point sources present. An

acoustic point source of strength _ is located by vector

x • A domain location, Xd, is described by vector x d. A
S

unit vector normal to the boundary is represented by n.

Figure 3.1 represents analysis of a problem where the

domain is enclosed by the boundary. The IBEM can also

provide solutions for problems where the domain is external

to the boundary. For external domain

A

direction of n is reversed from that shown in

analysis the

Figure 3.1,

i.e., the normal vector always points into the domain.

The IBEM is a numerical approximation of Huygen's

principle. Huygen's principle states that if the boundary
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of the domain is replaced by a distribution of fictitious

sources such that the conditions at the boundary are

reproduced, then the conditions in the domain are likewise

reproduced. It follows that the Huygen's principle

formulation

corresponding

known. The

investigation

requires that the boundary conditions

to a well posed boundary value problem be

boundary conditions formulated in this

are acoustic pressure, particle velocity, and

specific acoustic impedance. Calculation of quantities in

the problem domain using the IBEM is essentially a two step

process. First, the fictitious source distribution is

solved such that it reproduces the conditions at the

boundary as specified by the boundary

Second, the quantities of interest at

domain or on the boundary are found from

source distribution. In this work,

interest In the domain is

value problem.

locations in the

the fictitious

the quantity of

the acoustic pressure.

Because the first step in the IBEM is to solve for the

fictitious source dlstr_butlon given the boundary

conditions, expressions relating the known boundary

conditions to the fictitious source distribution are

needed. The acoustic pressure at a point on the boundary,

due to the fictitious source distribution is given by
I'

P(bl)- f o(b)p (b,b I) dB (3.1)
B
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where o(b) is the fictitious source distribution along the

boundary and p (b,b I) is the fundamental pressure solution.

The fundamental pressure solution is an influence function

m

which relates the effect of a unit point source at b to the

pressure at b
I

The fundamental pressure solution for this

formulation Is the free space Green's function:

* -- -- 1 -jkr
P (b'bl)ffi r e (3.2)

where

r- I_ I - _1 (3.3)

The quantity k in equation 3.2 is the wavenumber and

j= _. Other fundamental solutions could be used

depending on the physical problem. For example, if an

infinite reflecting plane is present in the problem, Image

sources would be Included in the fundamental solution [47].

Similarly, the velocity normal to the boundary at b
I

due to the fictitious source distribution is given by

U(_l)- / _(_)u*(b,b I) dB
B

(3.4)

The quantity u (b,b I) is the fundamental velocity solution

which is an influence function of a unit point source at b

m

on the velocity at b I.

is obtained from the

The fundamental velocity solution

fundamental pressure solution by

Euler's equation:
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* -- -- -1 5p (b,b I)
A (3.5)

u (b'bI)= JkOoC an

where p is the equilibrium density of the air and c is the
o

speed of sound. Equation 3.5 can be rewritten as

* -i n'Vp (b b I) (3.6)u (b,bi)- jkp c
O

or

*- -- (n'Vr) 1 r_ e-jkr
u (b,bi)ffi JkPo c (--_r + ) (3.7)

The pressure and velocity of a point on the boundary

are also influenced by the acoustical point sources present

in the domain of the problem. The

m

source(s) of strength _ located at x
S

is

effect of a point

on the pressure at _I

ns

P(bllffi f a(blp (b,b I1 dB + Z *kp (x s b I1 (3.8/
B kffil ,k'

where ns is the number of point sources present. Likewise,

the contribution of the point source(s) on the velocity at

_I is

ns
_ _ , -- -- . -- _

U(bl)ffi f _(b)u (b,b I) dB + E +k u (x b I) (3.9)
B kffiI s,k'

The integrands in equations 3.8 and 3.9 contain a

singularity. The singularity occurs in the fundamental
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solutions when r-0 or _ffi_I" The fundamental pressure

1
solution has a -- singularity which can be eliminated by

r

evaluating the boundary integral using a polar coordinate

system. The polar coordinate system transformation will be

discussed in more detail In section 3.2. The fundamental

1

velocity solution has a --_ singularity which is strong and
r

must be treated as a Cauchy principal value [48]. The

procedure is to exclude a small region about the point of

singularity in the boundary integral. The boundary

integral over the small region is accounted for by the

addition of a "free term." Thus, equation 3.9 becomes

m _ _ n m

u(_i)= Jkp4_oc Cb_(_ I) + /_ _(b)u (b,b I) dB
B

ns

+ Z _k u (x b I)
k=l s,k'

(3.10)

I

where B Is the boundary excluding the small region about

the singularity point. For a singularity located on a

1

smooth part of the boundary Cbffi -_. If the singularity Is

Q

located at a corner of the boundary, then Cbffi 4_ where Q

is the solid angle (in steradians) of the domain

encompassed by the boundary corner [49].

Impedance boundary conditions may also be modeled with

the IBEM. Assuming a locally reacting boundary, the

acoustic impedance at _I is given byspecific
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(3.11)

Rearranglng equation 3.11 results in an alternate form:

p(_I) - z(_i)u(_ I) - o
(3.12)

Substitution of the boundary Integrals into equation

yields

3.12

f o(b)p (b,b I) dB -
B

z(bl) f a(b)u*(b,_ I) dB-

B

ns

+ k'IZ Ck[P*C[s,k'_l) - ZC_l)U*(_s,k'bl )]

4_ m m

- jk-_o c z(bi)CbC(bI) ffi0
(3.13)

Equations 3.8, 3.10, and 3.13 are the necessary

equations to solve for the fictitious source distribution

along the boundary of the domain of interest. Equation 3.8

is used if pressure boundary conditions are known at b I.

If velocity boundary conditions are given at _I' then

equation 3.10 is evaluated. Likewise, equation 3.13 is

evaluated if locally reacting impedance boundary conditions

are specified at _I"

Once the fictitious source distribution is calculated,

the acoustic pressure or particle velocity at locations in

the domain or at the boundary can be found. The pressure

at _d is given by
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ns

P(Xd)ffi Bf °(b)p*(b'Xd) dB + kffilZ Ckp (Xs,k,Xd) (3.14)

The component of the velocity in the direction of the unlt

A I

vector v at x d Is

. _ _ ns ,

U(_d)= f o(b)u (b,x d) dB + E Ck u (_ x d) (3 15)
B k= I s,k' "

where

* -- _d). -1 " *
u (v s, jkPo c v'Vp (Vs,Vd) (3.16)

1 I

and v and v are vectors locatlng a source and a domain
s d

location respectively. Provided that _d is not located on

the boundary, the boundary integrals of equations 3.14 and

i

3.15 do not contain a singularity. If x is located on the
d

boundary, the resulting singularity is evaluated wlth

fundamentally the same procedure that was used for the

I

fictitious source solution. When x Is
d

on the boundary,

equation 3.15 becomes

B-

ns

+ Z _k u (x x d)
k, I sjk'

(3.17)

where c _O if the domain Is exterior to the boundary,
b

c _-I Jf the domain is enclosed by the boundary.
b

singularity present In equation 3.14 when _d is located

the

or

The

on

boundary can be removed by a conversion to polar
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coordinates as will be shown in the next section.

3.2 Numerical Implementation

The IBEM evaluates

the proceeding section

is dlscretlzed into

boundary elements.

evaluated over each

the boundary integrals developed in

on a piecewlse basis. The boundary

a number of sections referred to as

The boundary integral equations are

element and summed together for the

complete boundary solution.

A noncompatlble, triangular, linear, superparametrlc

element is used in this investigation to dlscretize the

boundary. A superparametric element uses a higher order

interpolation for the geometric mapping than the functional

mapping. Noncompatlble elements do not require that the

parametric elemental properties be continuous across the

elements. Anticipating the need for models with a large

number of elements, a computationally simple element was

chosen so that results could be obtained with reasonable

computer capacity and time. Consequently, an element with

linear geometric characterJstlcs and constant functional

characteristics was chosen. Although such elements are

quite efficient, modeling errors occur when the boundary is

curved [50]. The modeling errors will be discussed in

section 3.3.
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An IBEM using compatible, quadratic isoparametric

elements was studied by Kipp [46] and found to provide

accurate results for curved surfaces. However, enforcing

compatibility of the elements caused poor results for

models which contained corners or edges. K_pp suggested

that a noncompatible element be used to model geometries

with corners or edges.

Using the dlscretlzed boundary, equation

rewritten as

3.8 can be

ne

P(bl)= E f _(bj)p*(bj,b I) dBj

j=l Bj

ns

+ E _kp (x s k,bl)
k=l

(3.18)

where ne Is the number of elements in the boundary element

th

model, and Bj Is the boundary section contained by the J

element. Likewise, equation 3.10 can be written as

c bI) + f _(b )u (b ,b I ) dB
u(bI)= J _'pp o c b _( - s s s

B
S

ne

+ z f

j=l Bj
J_s

ns

+ Z _k u (x
k=l

m

_(bj)u (bj,b I) dBj

w

s,k,_ ) (3;19)

I

where B represents the boundary
S

singularity but excluding the

element enclosing the

small region around the

singularity. Because the elements used in this formulation
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are geometrically flat, the elemental boundary integral

u

over B in equation 3.19 is evaluated over a flat surface.
s

A

For a flat surface, the vectors n and Vr in the fundamental

velocity solution will always be perpendicular. Thus,

fundamental velocity solution is zero over B ands

the

m

f a(_s)U*(bs,bl) dB s - 0

B
s

(3.20)

By applying equation 3.20 and the boundary discretlzatlon

principle, equation 3.13 can be rewritten as

ne

.]
ne

- z(_ I) E f o(_j)u*(bj,b I) dBj

J-1 Bj
J#s

ns

+ E +k[p (_ b ) - Z(bl)U (x bl)]s,k' I s,k'
k'l

ji4_ -- Z(bl)CbO(_ I) - 0
Po c

(3.21)

The constant functional characteristic of the element

implies that the fictitious source distribution, the

pressure, and the velocity are constant over the element.

Thus, a given boundary condition is assumed representative

of the entire element. However, the IBEM requires for a

constant functional element that the boundary condition be

applied at a single point on the element. The location

where the boundary condition will be applied is the
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centroid of the element. Because the fictitious source

distribution is cons'tant over the element, _(b ) can be
J

removed from the elemental boundary integral. Applying the

boundary conditions at the centrold of the element,

equation 3.18 becomes

ne

P(Bi1= E aj f p*(bj,B i) dBj
J-I B

J
ns

÷ _. _kp (x k,Bt)
k= I S,

(3.221

where

element, and

.th
3 element.

th
i element.

th
Bi is the vector locating the centroid of the i

_j is the fictitious source strength of the

The point located by _I is contained by the

Similarly, equation 3.19 becomes

ne

4_ (bj B i ) dBju(Bl)ffi Jk--_-_ Cb_l + Z _j f u* ,

o j=l Bj

ns

+ Z _k u (x ,B 1
kffil s,k I

(3.231

and equation 3.21 becomes

J-1

ne

- z(B ) Z
j=1
j_i

ns

ne

Z o. f p*(bj,Bi) dB
3 B.

3

o'j I u*(b'j B'il dB
B. ' J
3

* -- - - (x ,Bi)]+ Z #k[p (Xs,k,Bi) z(Bi)u* -- --
k'l s,k

4_

- jk-_oC z(Bi)Cb_ i ffi0
(3.24)
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A system of ne equations for the ne unknown a's Is

obtained by writing the appropriate equation for each

element. The system of equations can be compactly written

in matrix form as

[Ai{a} + [ClI+} = {=} (3.25)

where {a} contains the values of the fictitious source

strengths and {_} contains the point source strengths. If

element i has a pressure boundary condition, then

Aij = f p*(_j,F i) dBj ; J*i (3.26a)
B.
3

Aii= f p (bi,B i) dB i (3.26b)

B t

* -- ,Bi ) (3 26c)Cik = p (Xs, k

a i = p(B t) (3.26d)

If element i has a velocity boundary condltlon, then

= f u (bj,B i) dBj ; J*i (3.27a)AiJ B.
3

All = Jk--_oc Cb

m m

Cik = u (x B i)s_k _

=i = u(Bi)

(3.27b)

(3.27c)

(3.27d)

The matrix terms

element i are

for impedance boundary conditions on

A lj " /
B.
3

p*(_j,Bi ) - z(Bi)u_(bj,B i) dBj ; J*i(3.28a)
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4_ -- )c bAll = f P*(_i'Bi ) dBi - Jk-_ z(Bi

B t o

Clk ffip (Xs,k,B I) - z(Bi)u*(Xs,k,Bi)

" 0
i

(3.28b)

(3.28c)

(3.28d)

Examining equations 3.25 through 3.28, one finds [A] has

dimensions ne x he, [C] is ne x ns, {_} is of length ne,

{&} is of length ns, and {_} has a length of he.

From equations 3.26, 3.27, and 3.28, it is apparent

that the diagonal of [A] contains the integrals of singular

functions. The integral of the singularity due to the

fundamental veloclty solution has already been accounted .

for by the free term. The remaining boundary integral

containing a singularity is that of the fundamental

th
pressure solution over the i element:

I e-jkr dB
P*(bi'Bi) dBi " f _ i

B i B i

(3.29)

The quantity r is the distance between the point of

The

the

integral by a conversion to polar

integration, bl, and the centroid of the element, B i.

1
-- term causing the singularity can be removed from
r

elemental boundary

coordinates [51]. When the elemental boundary integral in

equation 3.29 is evaluated in a polar coordinate system,

dB i is replaced with rdrde (the differential area in polar

coordinates). Furthermore, if the centrold of the element

coincides with the origin of the polar coordinate system,
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the r in equation 3.29 is Identical to the r in the

differential area for polar coordinates, and equation 3.29

becomes

f p (bi,Bi) dB i " f f e

B i 0 r

-Jkr
drde (3.301

Figure 3.2 illustrates the concept presented above.

The double integral in equation 3.30 is evaluated by

dividing the element into three triangular sections as

shown in Figure 3.3. The point c in Figure 3.3 is the

centrold of the element, i.e., the origin of the polar

coordinate system. The double integral is evaluated for

each section and the results are summed for the total

solution. For one section the double integral becomes

e R(e)

f f e-jkr drdO = f f e-jkrdrde
0 r 0 0

(3.31)

Evaluating the inner integral yields

O

f f e -jkr drd0 -k _ f (e -jkR((}1 - 11 dO (3.32)
0 r 0

From trigonometric relationships it can be shownthat

dld 2
sin8

d 3
R(O) - (3.33/

d 2
sln[_ - sln-l(_ - sinO) - 0]

a3

The integral in equation 3.32 can be evaluated using a



54

numerical integration procedure. The numerical integration

procedure used to evaluate the integral over e In equation

3.32 is a 10-polnt Gauss-Legendre quadrature [52].

The off-diagonal terms of [A] are computed using

essentially a one point Gauss-Legendre quadrature to

approximate the elemental boundary integrals. The location

of the integration point Is the centrold of the element and

the weighting factor is the element area. The integral of

th
the fundamental pressure solution over the J element is

approximately

f p (bj,B i) dBj : p (Bj,Bi)A j (3.34)
B.

J

where A. is the area of the j
J

th
element. Similarly,

B.f u (bj,Bi) dBj "_ u (Bj,BI)A j

J

(3.35)

Such an elementary approximation to the elemental boundary

integrals was chosen for computational simplicity. If the

fundamental solutions vary greatly over the elements,

equations 3.34 and 3.35 will be poor approximations of the

actual integral. As will be demonstrated in the next

section, the one point quadrature was found to be an

adequate approximation for most circumstances.

After the terms of [A], [C], and {a} have been

evaluated and assembled into matrix form, equation 3.25 Is
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solved for the unknown _'s using a complex linear equation

solver. The routine used in this investigation is LEQTIC

available from the International Mathematics and Statistics

Library (IMSL). LEQTIC solves a system of complex linear

equations of the form [A]{x} = {b} were {x} contains the

unknowns. Equation 3.25 can be put in appropriate form as

[A]{.} = {{_} - [c]{+}} (3.36)

After the fictitious source strength of each element

is known, equation 3.14 is used to find the pressure at a

domain location. Using the boundary discretizatlon

process, equation 3.14 becomes

Be

p(_d)= Z _j / p*(bj,x d) dBj

j =1 Bj
ns

+ Z +kp*(_ k,_d)
kffi I s,

(3.37)

If the values of pressure at a number of domain locations

is desired, a matrix equation can be derived of the form

{p} = [D]{_} + [E]{+} (3.38)

where {p} Is a vector of length np and np is the number

domain locations. For the ith domain location

of

Dij = f p (bj,Xd,i) dB.
B. J

Elk = p (x )s,k'Xd,i

(3.39a)

(3.39b)
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As in equation 3.34, the elemental boundary integral of

equation 3.39a is evaluated using the one point quadrature

approximation:

Bj i ) dBj = p (Bj,Xd l)A., , J
(3.40)

where Aj is the area of the jth element.

Implicit in equation 3.40 is the premise that _ is
d,i

not located on the boundary. If _ is located on the
d,i

boundary, the technique used to evaluate equation 3.26b can

be used to evaluate DIj . where the J" subscript denotes the

element number which contains the domain location. The

acoustic pressure is one of the physical variables which

was assumed to be constant over the element. Therefore,

evaluating the pressure at x d is equivalent to
,i

calculating the pressure at the centrold of the element

which contains Xd, I. The Dij " term then becomes

w

Dij- " f p (bj ,B ) dBj (3.41)
Bj. " J" "

Equation 3.41 is identical to equation 3.26b, and thus, the

technique used to evaluate equation 3.26b can be directly

applied to equation 3.41.
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3.3 Verification

As

interest

acoustic

examined

previously

for the

pressure,

for

mentioned, the physical quantity of

study of active noise controllers is the

Thus, acoustic pressure solutions were

verification purposes. The IBEM was used to

solve several acoustical problems which have known

analytical solutions. A spherical and a rectangular prism

boundary geometry were used in the verification process.

Both the interior and

geometry were examined. Verification

prism involved only interior domain

presented in the next two sections

subset of the complete verification

verification studies not presented

appropriate.

exterior domains of the spherical

using the rectangular

studies. The results

are a representative

process. Results from

are summarized where

All

verification

time varying

acoustical problems analyzed with

purposes are characterized

solutions:

the IBEM for

by harmonically

where _ is the excitation frequency. The IBEM solves for

the steady state magnitude and relative phase of the time

harmonic solution, p(x,y,z). Thus, the time dependent

component of the solutions is not included in the analysis.

Jet
p(x,y,z,t) = p(x,y,z) e (3.42)
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3.3.1 Spherical Boundary Results

Analytical expressions for the acoustic response due

to spherically shaped geometries are easily derived and

well understood. For uniform boundary conditions over a

spherical surface (a spherically symmetric problem), both

the interior and exterior responses vary in only the radial

direction.

Two models of a spherical boundary were used in

verifying the IBEM code. Both models approximated the

shape of a sphere, one meter in radius, centered about the

origin. One model approximates the sphere using 48

elements while the other uses 96 elements. In both models

the nodes of the elements were located on the sphere

surface. Each model was constructed so that the centroids

of the elements were equidistant from the center of the

sphere and all the elements had equal area.

The first problem analyzed was the interior sound

field created by a pulsating sphere. A pulsating sphere

has a uniform radial time harmonic surface velocity. The

analytical solution for the acoustic pressure inside a

pulsating sphere of radius a is [53]

2

JkPoca Uo sin(kr)

p(r)- sin(ka) - ka cos(ka) r (3.43)

where U is the amplitude of the surface velocity. Note,
o
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the pressure at

infinite whenever

a particular radial

sln(ka) - ka cos(ka) - 0

location becomes

(3.44)

or

tan(ka) = ka (3.45)

The transcendental equation 3.45 is nonlinear, and thus,

the roots of the equation, which are the natural

frequencies of the cavity, must be solved iteratively. The

first three natural frequencies occur at kaffi0, ka=4.49, and

kaffi7.72.

A comparison of the acoustic pressure as given by the

analytical solution and by the IBEM for a radial location

a

of _ is presented in Figure 3.4. The surface velocity

amplitude was Im/s. Examination of Figure 3.4 reveals that

there _s an apparent frequency shift of the IBEM solution.

This shift in frequency is caused by the geometric modeling

of the curved spherical surface with flat elements. The

sphere was modeled by placing the nodes of the flat

elements on the sphere surface. Thus, the centrolds of the

elements are within the spherical boundary being modeled,

and the boundary element model is circumscribed by the

sphere. The boundary conditions of the problem are applied

at the centrolds of the elements, and the elemental
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boundary Integrals are calculated using the centrolds as

the numerical integration point for the quadrature.

Consequently, the 96

slightly smaller radius

thus, higher natural frequencies

indirect boundary element method.

element model resembles a sphere of

than the analytical model, and

are predicted by the

When the analytical solution is recalculated using an

adjusted sphere radius corresponding to the radial location

of the elemental centrolds, the analytical solution and the

IBEM solution are nearly

demonstrates the result. The

elemental centroids is r-0.9437m.

identical. Figure 3.5

radial location of the

Figure 3.5 suggests that

when modeling curved surfaces with flat, linear elements,

the model should be constructed such that the centroids of

the elements are located on the curved surfaces.

Accurate IBEM results at the pressure node at k=6.28

in Figure 3.5 further demonstrates that the frequency shift

of the IBEM results is caused by geometric modeling errors.

The pressure node results from the sln(kr) term in equation

3.43. Because sln(kr) is independent of sphere radius,

geometric modeling errors should not affect the accuracy of

the IBEM in predicting the pressure node. Figure 3.5 shows

that the IBEM solution is not shifted in frequency at the

pressure node.
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To further demonstrate the modeling effects of using

geometrically linear elements to model curved surfaces, the

IBEM results for two models with different element mesh

sizes are presented in Figure 3.6. The acoustic pressure

a

at r-_ for the interior of a pulsating sphere was computed

using a 48 element model and a 96 element model. The 96

element model is geometrically a closer approximation to

the actual sphere than the 48 element model. Thus, the

IBEM results obtained with the 96 element model are

characterized by a less pronounced shift in frequency. For

curved surfaces, the IBEM results will converge to the

analytical solution as the number of elements increases

until a point where the element size becomes so small that

the elemental boundary integral approximation becomes

inaccurate.

The IBEM results for the prediction of the sound field

inside a pulsating sphere diverge from the analytical

solution in the very low frequency regime. This behavior

is demonstrated in Figure 3.7 using the 48 element model to

compute the pressure at half the sphere radius. Similar

behavior has been reported by Kipp [46] using an IBEM and

by Gardner [47] using a DBEM. As in this work, Gardner

uses a one point quadrature to approximate the elemental

boundary integrals. Gardner shows that the divergence is a

result of the one point quadrature approximation. Results



62

for the low frequency region improved with the use of

higher order Gauss-Legendre quadratures. However, as shown

In Figure 3.7, the IBEM results obtained with the one point

quadrature remain reasonably accurate for wavenumbers as

low as approximately k-0.7 which corresponds to a frequency

of 38 Hz. For frequencies much below 38 Hz, active noise

controllers perform poorly due to

Consequently, IBEM analysis in

region is unnecessary for the

controllers.

hardware

the very

study of

limitations.

low frequency

active noise

Prediction of the acoustic pressure in the field

exterior to a pulsating sphere was the next problem

analyzed wlth the _BEM. The analytical solution for the

exterior sound field created by a pulsating sphere is [54]

2
Jkp cU a -jk(r-a)

o o e (3.46)
P(r)= 1 + jka r

Equation 3.46 can be rewritten as

jkp cq -Jk(r-a)
O e

P(r)= I + Jka 4_r
(3.47)

where Q is known as the volume velocity source strength.

The volume velocity source strength is the surface integral

of the velocity normal to the surface:

--._ a2U
Q- / u n dS - 4_ o (3.48)

S
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A

where n is a unit vector normal to the surface.

with

Figure 3.8 shows the comparison of

the analytical solution for

the IBEM results

the exterior of a

pulsating sphere of Im radius.

sphere was Im/s and the wavenumber was 0.01.

results are in excellent agreement with the

solution.

The surface velocity of the

The IBEM

analytical

For further verification, the acoustic pressure at a

single field point exterior to a pulsating sphere was

computed for a range of frequencies. The field point was

at a radial distance of 10m and the surface velocity was

Im/s. Figure 3.9 illustrates the results. Note that the

boundary element method solution diverges from the

analytical solution at the interior eigenfrequencies. This

phenomenon, labeled a uniqueness problem, is well

documented in the literature. The interior

eigenfrequencies are the frequencies where the pressure at

the boundary is zero for the interior problem. From

equation 3.43, the interior eigenfrequencies for a

spherical cavity are found to occur at sln(ka)=0. For a

sphere of unit radius the elgenfrequencies are k=_, 2=, 3=,

etc.. However, the eigenfrequencles apparent in Figure 3.9

are slightly larger than those calculated for the sphere of

unit radius. The IBEM predicts slightly larger values for

the elgenfrequencles because the eigenfrequencies result
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from the Interior problem and

radius.

for the

solution.

are a function of sphere

Thus, the geometric modeling errors as discussed

interior problem affect the eigenfrequency

For an adjusted sphere radius of a=0.9437m (the

radial location of the elemental centrolds for the 96

element model), the first two interior eigenfrequencles are

k=3.329 and k=6.658 which closely correspond to the

frequencies at which the IBEM solution diverges. Although

there is no known procedure for improving the boundary

element method solutions at the eigenfrequencies, it is

important to realize the existence of this phenomenon when

the IBEM Is utilized for radiation problems.

The point source modeling capability of the IBEM was

verified by investigating the sound field created by a

point source at the center of a rigid wall sphere. The

point source had a volume velocity source strength of

I m3/sec. For this analysis, the 48 element sphere model

with velocity boundary conditions of magnitude zero were

used. The analytical solution for a point source at the

center of a rigid wall sphere of radius a is [50]

Jkp cQ
o sin k(r-a) + ka cos k(r-a)

P(r)= 4_r ka cos(ka) - sln(ka) (3.49)

where Q is the volume velocity strength of the point

source. Figure 3.10 shows a comparison of the IBEM results

with the analytical solution for the acoustic pressure at
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a

r=_. In Figure 3.10, the frequency shift

solution is apparent as expected because the

model is a rough approximation of a sphere.

point source modeling

appears to be valid.

in the IBEM

48 element

However, the

capability of the IBEM otherwise

The 48 element sphere model was used to verify the

Impedance boundary condition capability of the IBEM. A

point source with volume velocity source strength of

0.5 m3/sec was positioned at the center of the model. The

sphere model was given impedance boundary conditions which

corresponded to the impedance for free field radiation.

The pressure field created by a point source (monopole)

with volume velocity source strength Q radiating into a

free field is [55]

JkPoCQ e-jkr

P(r)= 4= r (3.50)

where r is the distance from the

specific acoustic impedance is given by

z= u = -jkPoC an

point source. The

(3.51)

SubstltutJng equation 3.50 into equation 3.51

specific acoustic impedance as

Jkp cr
0

z(r)= I + jkr

gives the

(3.52)
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The analytical and IBEM predictions for the acoustic

a
pressure at r=_ as a function of frequency are shown in

Figure 3.11. The IBEM results are in excellent agreement

wlth the analytical solution. The specific acoustic

Impedance boundary conditions were calculated at the radial

locations of the element centroids which removed the

geometric modeling error from the problem.

3.3.2 Rectansular Boundary Results

For verification purposes, the rectangular cavity was

analyzed as a one-dlmensional system. Analytical

expressions for the pressure distribution in one-

dimensional systems are readily available and easily

evaluated. The frequency and method of excitation were

chosen such that one-dlmensional behavior was ensured. Two

models of a rectangular cavity were used in the

verification process. Both models have dimensions of

1.04775m x 1.02235m x 1.8288m. One model uses 80 elements

while the other uses 156 elements. The 80 element model is

shown in Figure 3.12.

The

drlven-rigid cavity. The

was given a uniform velocity

The other five sides of the

first acoustic problem considered was that of a

end of the cavity at Zffil.8288m

boundary condition of Im/s.

cavity were rigid. The
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analytical solution of the drlven-rlgld cavity of length

is [56]

-J p cU
O O

p(x)ffi sln(kL) cos k(L-x) (3.53)

where U is the velocity of the driven wall and x
o

distance of a field point from the driven wall.

is the

The accuracy of the IBEM results for the rectangular

cavity were found to depend on the geometrical location at

which the solution was obtained.

results, solution locations were

qualitative groups:

For analysis of the

categorized into four

- locations in the central portion of the cavity

- locations along a midsection of a cavity wa'll

- locations along an edge

- locations near a corner

Results obtained with the 80 element model are compared to

the analytical solution in Figures 3.13 and 3.14. The IBEM

results in Figure 3.13 were calculated along the line

described by Xz0.5m, Y-O.5m (along the central portion of

the cavity). The IBEM results shown in Figure 3.14 were

computed for locations along the llne described by XmO.Im,

YzO. Im (along an edge). Overall, the IBEM results compare

well with the analytical solution. The results calculated
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along the line through the middle of the of the cavity

degrade slightly in accuracy near the ends of the cavity.

The data in Figure 3.14 shows this same behavior but to a

greater degree. Thus, the performance of the IBEM is least

accurate for domain locations In close proximity to a

corner of the cavity.

A smaller element size improves the accuracy of the

IBEM results for locations near a corner. The data in

Figure 3.13 is replotted In Figure 3.15 along with the

results obtained wlth the 156 element model. Note that the

accuracy of the results for both models is approximately

the same. However, when the data for the 80 element model

is compared with the results obtained using the 156 element

model, an overall improvement in the accuracy is found for

the domain locations near cavity corners as shown in Figure

3.16.

The loss in accuracy of the IBEM solution for domain

locations near a corner Is a result of the one point

quadrature approximation to the elemental boundary

integrals. As a domain location approaches a point on a

boundary element, the value of r in the fundamental

solutions for that domain location approach zero at the

boundary point. Depending on the size of the element and

where the domain location is situated relative to the

element, the value of r over the element may vary from
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relatively small quantities to much larger quantities as

1
-- factor in theshown in Figure 3.17a. Because of the r

1

fundamental pressure solution and the 2 factor In the
r

fundamental velocity solution, large variations as r

approaches zero cause the fundamental solutions to behave

as high order functions. Since the one point quadrature

poorly integrates high order functions, the elemental

boundary integrals for the elements close to the domain

location are not accurately approximated (equation 3.40).

Smaller element size improves the results because the

relative change in the value of r is less over a smaller

element as shown in Figure 3.17b. As shown by Gardner

[47], using higher order quadratures for approximating the

elemental boundary integrals also Improves the

element method results for domain locations

boundary.

boundary

near the

The acoustic pressure as a function of frequency was

analyzed at particular locations in the driven-rlgld

cavity. A comparison of the analytical solution with the

IBEM predictions for the pressure at a location in the

central portion of the cavity (0.Sm,O.Sm,l.0m) is presented

in Figures 3.18 and 3.19. The 80 element model was used to

obtain the results in Figure 3.18. The IBEM predictions

presented in Figure 3.19 were acquired with the 156 element

model. Comparison of Figures 3.18 and 3.19 shows both
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models perform equally well for centrally located domain

positions. The beginning of the IBEM solution divergence

from the analytical solution for the low frequency regime

is evident in both Figure 3.18 and 3.19. This divergence

is of the same nature as that discussed for the interior of

a pulsating sphere. For the drlven-rlgid cavity problem,

the IBEM solution reverses slope at approximately k=0.1

(5.5 Hz). Using the 80 element model, the pressure as a

function of frequency was calculated for a domain location

near the middle of a slde-wall. The results were identical

to those shown in Figure 3.18. Figure 3.20 shows the 80

element model results for a domain location near a corner

of the cavity (0.1m,0.1m,0.1m). Figure 3.21 shows the

results for the 156 element for the

reasons previously discussed, the

provides a more accurate solution at

same location. For

156 element model

the domain location

near a corner but still shows some error.

The driven-lnfinite cavity was the next acoustical

construct analyzed with the IBEM. The analytical solution

for the pressure as a function of position in the cavity is

given by

-jkx
p(x)= p cUe (3.54)

0 o

where x is the distance from the driven end and U is the
0

amplitude of the time harmonic velocity function at the



71

driven end. The particle velocity along the cavity is

-jkx
u(x)= U e (3.55)

0

The specific acoustic impedance at a point in the cavity is

given by

z(x)= p(x) c (3.56)
u(x) = Po

Thus, the drlven-inflnlte cavity problem can be modeled by

the rectangular cavity by specifying the specific acoustic

impedance boundary condition with a value of po c for the

wall opposite the driven end.

The IBEM solutions for the driven-lnfinite cavity

uslng the 80 element model and the 156 element model are

presented in Figure 3.22. Note that the scale has been

expanded significantly. The velocity at the driven end was

lm/s and the wavenumber was 2. The 156 element model had

slightly better accuracy overall. The maximum error for

the 80 element model is approximately 5.5% while the

maximum error for the 156 element model is approximately

3%. For higher values of wavenumber the accuracy of the

IBEM deteriorated particularly at locations near the cavity

ends. Consistent with the results for the drlven-rigid

cavity, the performance of the IBEH degraded for the

drlven-infinite cavity problem at domain locations near a

corner.
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An Interesting aspect of the convergence

boundary element methods is apparent in Figure

Unlike finite element methods, boundary element

of the

3.22.

methods

cannot

solution

boundary

approach

be

as the element slze is decreased.

element method results may not

the true solution with decreasing

noticeable in Figure 3.22.

the analytical solution

bas_cally underpredlcts

This feature is

model overpredicts

element model

solution.

mathematically proven to converge to the true

Consequently,

systematically

element size.

The 80 element

while the 156

the analytical

3.3.3 Summary

In the preceding sections, It has been shown that the

IBEM (as developed in this thesis) is a viable method for

the prediction of the acoustic pressure in sound fields.

However, there are several phenomena which must be

acknowledged. First, when modeling curved surfaces with

geometrically flat elements, the model should

constructed such that the centroids of the elements lle

the curved surfaces. Second, the pressure solution

be

on

for

exterior problems diverges from the true solution at the

eigenfrequencles of the corresponding Interior problem.

Third, the IBEM results are inaccurate for the very low

frequency regime of interior problems. However, this

problem is irrelevant for thls work because active noise
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controllers are unable to operate at such low frequencies.

This low frequency inaccuracy potentially can be overcome

wlth better Integration. Fourth, although the IBEM results

for the rectangular cavity were excellent overall, the

accuracy of the IBEM solution does degrade at domain

locations In close proximity to a corner. The results for

domain locations near a corner do improve, however, with a

finer d_scretlzatlon.
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Boundary Element Method Formulation
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Figure 3.2 - Polar Coordinates For An Element
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Figure 3.3 - Geometry For Integration Of The Fundamental
Pressure Solution In Polar Coordinates
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Sphere With A Point Source At The Center
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CHAPTER4

AN OPTIMAL ACTIVE NOISE CONTROLLERFOR ENCLOSED

SOUNDFIELDS WITH COMPLETE SYSTEM DESCRIPTION

This chapter presents the definition and formulation

of a generalized technique to find an optimal active noise

controller in completely or partially enclosed sound

(noise) fields and evaluation of optimal active noise

controllers for various system characteristics. Four

assumptions are made about the system configuration for the

algorithm formulated in thls chapter. First, the sound

e j_tfield has a harmonic dependence of the form . Second,

the boundary has a known geometrical description and the

conditions at the boundary are known. Third, any point

noise sources In the system have a known source strength.

Fourth, the canceling sources locations are known, and the

secondary sources are modeled as monopoles. Thus, the

performance of active noise controllers operating under

Ideal circumstances will be investigated. Such topics as

stability, observabilIty, and causality will be addressed

in chapter 6.
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4.1 Problem Formulation

In the following sections, a formulation of an optimal

active noise controller is discussed and an expression for

the optimal active noise controller using the IBEM

formulation is derived. In the subsequent formulation,

capital letters will denote matrix quantities.

4.1.1 Introduction

The active noise control problem addressed in this

chapter is that of controlling harmonic, enclosed sound

fields. No restrictions are placed on the shape of the

enclosure or the sound propagation wlth_n the enclosure. A

general schematic of the system is shown Jn Figure 4.1.

The system _s comprised of four components: the enclosure

boundary, point noise source(s), controllable point

source(s), and observation point(s).

For this

boundary must

corresponding to

E_ther acoustic

reacting specific

at

of

of

boundary

particular investigation, the enclosure

have a known set of boundary conditions

a well-posed boundary value problem.

pressure, particle velocity, or locally

acoustic impedance is assumed to be known

every point on the boundary. In addition, the geometry

the boundary must be completely described by a fixed set

Cartesian coordinates. The specific acoustic impedance

condition can be used to model an open portion of
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the enclosure. Thus, the enclosure need not be complete.

Two types of point acoustical sources are possible in

the system. The first type is the uncontrollable point

noise source which hereafter will be referred to as a

primary source. Primary sources have a time harmonic

volume velocity source strength of known amplitude and

relative phase. The positions of the primary sources must

be given by the coordinate system describing the boundary.

The second type of point source Is the controllable

point source which will be referred to as a secondary

source. The secondary sources are introduced into the

enclosure to control the noise field. The objective is to

solve for the unknown amplitude and phasing of the

secondary sources such that a control objective function is

minimized. The positions of the secondary sources must be

specified.

Observation points are locations within the

where attenuation is desired.

strengths are determined such that

minimized at the observation points.

observation points must be known.

enclosure

The secondary source

the sound field is

The locations of the

An uncontrolled harmonic sound (no_se) field is

created in the enclosure by either the enclosure boundary

effects or the primary noise sources or a combination of
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both. Given all of the specifications of the system, the

objective is to determine an optimal controller. The

optimal controller, as defined for the current research, is

the modulus and phasing of the secondary sources which

minimize the acoustic response at the observation points.

The control objective function is computed from the

acoustic response at the observation points. Because the

control objective function is derived as a function of the

unknown secondary source strengths, an expression for the

optimal controller can be obtained by minimizing the

control objective function with respect to the secondary

source strengths.

4.1.2 The Control Objective Function

As stated by Bullmore et al. [28], a practical control

objective is to minimize the acoustic response (pressure)

at a number of dJscrete locations in the enclosure.

Consequently, the control objective function chosen for the

current research is a weighted sum of the magnitudes of the

pressure squared at the observation points:

n

cp

n- z Ipil2wl
:[."I

(4.1)

th

where, Pi is the acoustic pressure at the i observation

th

point, w i is the weighting factor at the i observation

point, and n is the number of observation points.
cp
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Observation point

control strategies.

are considered here.

local control.

utilization of one

weighting permits many possible

Two strategies of active noise control

The first strategy is referred to as

Local control is characterized by

or few equally weighted observation

points. By using a local control scheme, it is likely that

the overall noise level will increase at other locations in

the enclosure while the noise is attenuated at the

observation points. The increase in the overall noise

level at the other locations is deemed acceptable for a

local control scheme, k typical example of local control

is attenuation of noise at a passenger's head location in a

transportation vehicle.

is

by

The second strategy of active noise control problems

termed global control. Global control is characterized

an attenuation of the noise level throughout the

accomplished in this

grid of observation

enclosure. Global control is

investigation by utilizing a "fine"

points throughout the enclosure and weighting each

appropriately. A typical example of global control might

be the overall attenuation of noise throughout an aircraft

fuselage.

A practical method of weighting the observation points

in a global control problem is volume weighting. The

entire enclosure volume is divided into local volumes such
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that each observation point is apportioned a local volume.

Volume weighting is achieved by using the local volume as

the weighting factor for the corresponding observation

point. The local volume is chosen so that the observation

point is at the centrold of the volume. When volume

welghtlng is used, the control objective function resembles

the total time averaged acoustic potential energy of the

enclosure,

4.1.3 IBEM Formulation Of The Control Objective Function

If the acoustic pressures at the observation points

are written in complex form, the control objective function

of equation 4.1 can be rewritten as

where [W] is a n
cp

n = pBWR (4.2)

diagonal matrix with the values of

points. The B superscript denotes the hermit_an transpose.

From the IBEM

pressures at a set

equation 3.38 as

formulation of section 3.2, the

of domain locations are given by

p - D_o + _.2 (3.38)

Because there are two types of point sources (primary and

x n
cp

the weighting function (wl's) on the diagonal, and p is a

column vector representing the pressures at the observation
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secondary) in the problem domain, [E] and _ are partitioned

as

I'plE+ - [E I E ] -- - Z O + Z O

-- p s _s p--p s--s

(4.3)

where O
--p

contains

of Is]
P

contains the primary source strengths, and _s

the secondary source strengths. The i,j element

th

represents the influence of the j primary source

on the i th observation polnt. Likewise, the l,J element of

th

[E] represents the influence of the j secondary source
s

on the i th observation point. Utilizing equation 4.3,

equation 3.38 can be rewritten as

ffi D_ + E O + EsO s-- p--p --

(4.4)

However, c_ is unknown and is
not necessary for the

solution of the problem. From equation 3.36, _ may be

f ound as

-i (4.s)
= A (_- c_)

Partitioning [C] and _ as

I:plco - [c I Csl -- - c O + c
-- P _s p--p s--s

enables equation 4.5 to be rewritten as

(4.6)
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-I

s A (_ - Cp_p - Cs_ s)

Substituting equation 4.7 into equation 4.4 gives

(4.7)

DA-I DA-ICp)_p -Ic )_s- _ + (E - + (E - DA (4.8)
-- p -- S S --

The pressures at the observation points are only a function

of the (potential) noise sources from the boundary, _, the

primary sources, _p, and the secondary sources, _s"

Substituting equation 4.8 Into equation 4.2 gives an

expression for the control objective function in terms of

the noise sources and the secondary sources as

H H H H H H

II - _s R WR_s + v WR_s + _s R Wv + v Wv (4.9)

where

-1
R - E - DA C (4.10)

s s

-I -I

v " DA ,, + (E - DA C )(hp (4.11)_ _ p P --

Thus, the control objective function Is written in terms of

the IBEM formulation. Note that v is exclusively a

H
function of the noise sources and that v Wv is the value of

the control objective function without the active noise

controller. If n denotes
ss

sources, then [R] is n x n
cp ss

the number of secondary

and _ Is of order ncp.
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4.1.4 An Optimal Controller

The control objective function written in terms of the

IBEM formulation,

definite, quadratic

strengths. Such a

equation 4.9,

function of

function has

is a real, positive

the secondary source

a single unique global

minimum [30]. Hence, there is a unique solution for the

complex secondary source strengths which globally minimize

the sound field at the observation points. The complex

secondary source strengths which minimize the control

objective function are given when the derivative of H with

(R) and the
respect to both the real part of _ ' _s '--S

(1)
imaginary part of _ ' _s , is equal to zero [30]:--S

_H _H

(R) + J_,(1)
_-s -s

- 0 (4.12)

Utilizing equation 4.12, the minimum value of

objective function is found to occur when

the control

H H
R WR_b + R Wv - 0 (4.13)

_S

The unknown secondary source strengths which minimize H are

o 1 H

_-s " -(RHwR)- R Wv (4.14)

o
where _b

i s
denotes the values of the optimal secondary source

strengths (the optimal controller), The corresponding

minimum value of the control objective function is
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H H on ° = n(_s- _ ) . X wx + ! WR_ s

The attenuation due to the optimal active noise

is evaluated as

(4.15)

controller

H

ATN = I0 log pp
_o

(4.16)

where _ =_(_ =0) and ATN denotes attenuation.
pp --s --

A special case of active noise control in enclosures

occurs when the number of secondary sources equals the

number of observation points. If thls condition occurs,

0 m --I

then [R] is square, and equatlon 4.14 reduces to --_s -R v

(assuming [R] is nonslngular). Substituting the solution

for _o into equation 4.15 gives
--S

H o H H -Iffiv Wv - v WRR v (4.17)

-I
Since RR =[I] where [I] is the identity matrix, it can be

seen that H°=O. Therefore, n secondary sources are capable

of completely canceling the noise at n locations in the

cavity. If [R] is singular, the matrix does not consist of

independent equations. A singular [R] matrix is probably

an Jndlcatlon that the secondary sources are located such

that they do not excite independent modal responses, or the

observation points do not independently observe the

sources. Such a situation is unlikely in most cavities

unless the observation points are coincident.
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4.2 Case Study Results

In this section, the optimal solutions for a number of

active noise control system configurations are presented.

For each configuration, the optimal active noise controller

(secondary source strengths) and corresponding performance

were computed over a frequency band. As is characteristic

of boundary element methods, analysis of the problem is

performed at a discrete frequency. By analyzing the

problem at a series of frequencies, the optimal controller

as a function of frequency can be obtained.

The optimal controller was analyzed for two different

enclosure shapes. The first enclosure considered is a 48

sided polyhedron centered about the origin. The polyhedron

approximates the shape and acoustical behavior of a sphere

wlth a 1.0m radius. Because of the symmetry of the

polyhedron, the mechanisms at work can be understood, and

thus, conclusions about the behavior of active noise

controllers are straightforward. The polyhedron was

modeled using 48 triangular superparametrlc boundary

elements.

The second

dimensions of

Figure 3.12).

enclosure is a rectangular prism with

1.04775m x 1.02235m x 1.8288m (shown in

The eigenfrequency values for the

rectangular prism with rigid walls are given in Table 4.1.
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Table 4.1 - Elgenfrequencles Of The Rectangular

Mode (m,n,q)

(0,0,I)

(I,0,0)

(0,I,0)

(0,0,2)

(I,0,I)

(I,I,0)

(I,I,I)

k f (az)
mnq mnq

1.72 93.9

2.998 163.7

3.073 167.'8

3.43 187.2

3.46 188.9

4.29 234.2

4.62 252.2

Prism

The rectangular prism was modeled

superparametric boundary elements.

with 80 triangular

For purposes of analysis,

strengths are normalized

velocity source strength of

Qsn" The volume velocity

secondary sources are given

O

the optimal secondary source

with respect to the volume

the noise producing mechanism,

source strengths of the optimal

by

4_ o

JkPoC _bs
(4.18)

For each enclosure

observation points was

noise control problems.

a lattice of volume weighted

developed for analysis of global

A nonsymmetrlc lattice of 48

evenly dlstr_buted observation points was constructed for

the 48 sided polyhedron. The spherical domain Inscribed by

the polyhedron was divided into slx concentric spherical

shells. Each shell was then divided into eight equal
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volume sections. The observation points were positioned at

the centrolds of the spherical shell subsections. The

welght_ng factors were the corresponding volumes of the

subsections. To obtain a nonsymmetrlc dlstrlbut_on of

observation points, each spherical shell was rotated about

the X-axis, Y-axls, and Z-axls (in that order) by 15 ° with

respect to the neighboring shell on its inside surface.

For the rectangular prism, a symmetric grid of 72 evenly

distributed, volume weighted observation points was

developed.

Active noise control problems involving the 48 sided

polyhedron enclosure were analyzed from kffiO.5 to kffil0.0 (27

Hz to 546 Hz). For active noise control problems in the

rectangular prism enclosure, analysis was performed from

k=0.125 to k=5.0 (7 Hz to 273 Hz). The value of p c was
o

415.0 Pa's/m (air at 20°C) for all case studies presented

in this chapter.

If the enclosure boundary was the noise producing

mechanism, then Qsn was computed from the surface integral

of the normal velocity:

qsn " f u'n dS

where n is a unit vector normal to the

If the noise field was generated by

sources, Qsn was computed from

(4.19)

enclosure surface.

a set of primary
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n

4_ ps

•, _. _,p(1)Qsn jkPoC i= I --

where n is the number of primary sources.
ps

4.2.1 Global Noise Control

(4.20)

The system configuration for case 1 was a single

secondary source at the center of the 48 sided polyhedron

which was uniformly pulsating with a time harmonic normal

surface velocity u =l.0m/s. There were no primary sources
n

Jn the problem. Global noise control was sought; i.e., the

set of 48 volume weighted observation points were used.

Figure 4.2 shows the performance of the optimal

controller, and Figure 4.3 presents the optimal controller

versus frequency. There areseveral noteworthy features of

Figures 4.2 and 4.3. First, the control objective function

for optimal control approaches zero in the low frequency

limit. In the low frequency limit, the optimal active

noise controller adds and subtracts volume from the system

such that all the energy in the system is kinetic (the

fluid moves as a lumped mass), and hence H °, which

resembles minimum potential energy, approaches zero [9].

Second, the only frequencies at which significant global

attenuation occurs

natural resonances

Third, the optimal

is at very low frequencies and at the

of the cavity (k=5.0 and k=8.75).

active noise controller is completely
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ineffective at the antlresonances (frequencies of minimum

noise field response). Note that with the active noise

controller, the potential energy is almost uniformly the

same as found at the antiresonances. Fourth, the optimal

secondary source strength is less than the volume velocity

of the enclosure boundary for all frequencies considered.

Thus, eff_cient global noise control is possible at low

frequencies and at the enclosure natural frequencies. Away

from the natural frequencies, the global attenuation is

much less, but the secondary source strengths are

correspondingly reduced.

Figure

reduced.

despite

at the first enclosure

attenuation was attained as

ensure global attenuation at

Figure 4.4 presents the pressure profiles of the

uncontrolled and controlled sound fields for case I at

frequencies of low attenuation and high attenuation. In

4.4a, note that sound field was not uniformly

The effect of the secondary source is dramatic

the small level of attenuation achleved. However,

resonance (k=5.0), global

shown in Figure 4.4b. To

every frequency, a finer

observation point mesh could be used.

The system configuration studied for case 2 is

identical to that of case 1 except that the secondary

source was positioned at half the distance from the center

of the polyhedron to its boundary. The results for case 2
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are presented in F_gures 4.5 and 4.6. Comparing Figures

4.5 and 4.2, it can be seen that the attenuation is still

greatest at the natural frequencies but is much lower for

case 2. Also note that the required optimal secondary

source strengths at the frequencies of maximum attenuation

are larger for case 2. Moreover, the control objective

function with the secondary source operating is not uniform

over frequency in case 2.

The optimal active noise controller for case 1

achieved better performance because the secondary source

was positioned at an antlnodal location of all enclosure

modes. All elgenfunctlons of the pulsating polyhedron have

a maximum at the center. Consequently, the secondary

source was able to excite elgenfunctions of the same form

as those produced by the noise source (good modal

coupling). However, if the secondary source is positioned

away from the antinodal locations, as was the situation in

case 2, its effectiveness is reduced as seen in Figure 4.5

[28,31,32].

Cases 3, 4, and 5 further demonstrate the Importance

of modal coupling for global noise control. For cases 3,

4, and 5, a single secondary source was positioned a

distance of 0.1m, 0.2m, and 0.3m, respectively, away from a

primary source at the center of a rigid 48 sided

polyhedron. The results for cases 3, 4, and 5 are shown in
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Figures 4.7 and 4.8. The benefit of modal coupling is

apparent in Figure 4.7. The attenuation _ncreased at all

f requencles as the secondary source approached the primary

source. The Increase in the attenuation is a result of the

fact that when the secondary source is close to the primary

source, it can effectively couple into the same modes

excited by the primary source. In Figure 4.8, note that as

the secondary source approaches the primary source, the

optimal controller and primary source combination is

approaching the form of a dipole (equal in magnitude and

180 ° out of phase).

Case 6 extended the analysis of cases 3, 4, and 5.

Case 6 was identical to cases 3, 4, and 5 except that the

secondary source was located 0.01m away from the primary

source. The results of case 6 are presented in Figures 4.9

and 4.10. Note that the secondary source formed a dipole

with the primary source. Cases 3 through 6 suggest that if

the noise source is compact, the canceling source(s) should

be placed as close as possible to the noise source for

maximum attenuation of the noise field [28].

Cases 7, 8, and 9 demonstrate the effect of the

placement of secondary sources for the global noise control

of a distributed source. Four adjacent sides of the 48

sided polyhedron were given velocity boundary conditions of

1.0m/s. The remaining 44 sides were given rigid wall
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boundary conditions. A secondary source was situated along

a radial llne (from the center of the polyhedron) to the

centroid of the vibrating surface of the combined four

sides. The secondary source was located at distances of

O.Im, 0.2m, and 0.3m away from the centroid of the four

sides for cases 7, 8, and 9, respectively. The results are

shown in Figures 4.11 and 4.12. Figures 4.11 and 4.12

suggest that placing a secondary source in close proximity

to a distributed noise source is not necessarily

advantageous.

The placement of remotely located secondary sources

for the global control of noise fields created by

distributed sources was analyzed using the rectangular

cavity. The end of the rectangular cavity at Zfl.8288m was

given velocity boundary conditions of l. Om/s while the rest

of the enclosure was rigid. The set of 72 volume weighted

observation points was used. For case i0, a single

secondary source was located at (0.5m,0.5m,0.7808m). For

case II, the secondary source

(0.5m,0.5m,l.5288m). Figures 4.13

results of case I0 while Figures 4.15

results of case II.

was located at

and 4.14 display the

and 4.16 show the

Note that the secondary source placement of case II

results in increased performance of the optimal active

noise controller at frequencies around k-2.0. At the
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frequency corresponding to a wavenumber of 2.0, the

secondary source for case I0 is positioned at a nodal

location of the uncontrolled sound field while for case II

the secondary source is at an antinodal location. Because

the secondary source was located at an antinodal location

for case II, it was able to excite a response similar

spatially to the uncontrolled sound field but opposite in

phase. However, if the secondary source is located at a

nodal location (case I0), the secondary source is unable to

excite a modal pattern which will effectively control the

noise field. At high frequencies, neither secondary source

position is such that a similar field can be generated, and

thus, the performance is poor.

Hence, if global narrow-band attenuation is desired

using remotely located secondary sources, the secondary

sources should be placed at an antinodal location of the

noise field. For broadband global noise reduction, optimal

placements for the secondary sources are locations where

all eigenfunctJons of the enclosure have a maximum, such as

the center of a 48 s_ded pulsating polyhedron or the

corners of a rigid wall rectangular prism.

The sudden local minima at k=3.0 in the attenuation

curves of Figures 4.13 and 4.15 are due to presence of

cross modes In the enclosure. The noise source in cases I0

and II is such that it only excites longitudinal modes of
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the cavity. However, the secondary source is capable of

exciting both longitudinal and cross modes. The (I,0,0)

and the (0,I,0) cross modes have natural frequencies at

approximately kffi3.0. Consequently, at k=3.0 a nonzero

secondary source strength would excite previously unexcited

modes while attempting to cancel the noise field and thus

cause the overall sound pressure level to increase. Hence,

the optimal solution is a near-zero secondary source

strength; i.e., any attempt to attenuate the noise field

would result in an overall increase in sound pressure level

due to high cross mode response at k-3.0. The local

minimum at k-1.25 in Figure 4.13 is a result of the fact

that the combined acoustic responses at the observation

points due to the secondary source has a minimum at k=1.25.

4.2.2 Local Noise Control

The local control at one observation point using a

single secondary source was studied in case 12. The single

secondary source was at the center of a uniformly pulsating

48 sided polyhedron with a surface velocity of 1.0m/s. The

observation point was at one-half the distance from the

center to the polyhedron boundary. Figure 4.17 presents

the optimal controller as a function of frequency. Because

the number of secondary sources equaled the number of

observation points, the secondary source completely

attenuated the noise field at the observation point.
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The unbounded maximum at k=3.15 represents

uncontrollablllty. At approximately kffi3.15, the acoustic

modal response of the secondary source has a pressure zero

at the observation point. Thus, the secondary source is

unable to influence the acoustic response at the

observation point. Consequently, the required optimal

secondary source strength tends towards infinity.

The pressure distributions of the uncontrolled and

controlled noise fields at k=2.0 for case 12 are shown in

Figure 4.18. Notice that the only locations at which the

noise field was reduced were those neighboring the

observation point (radial posltion=0.5m). At locations

near the secondary source, the magnitude of the sound

pressure level increased dramatically.

In a study similar to case 12, case 13 examined

control at one

rectangular cavity.

velocity boundary

local

observation point In a driven-rigid

The wall at Z=l.8288m was given

conditions of 1.0m/s while the rest of

the cavity was rigid. A single secondary source was

located at (0.5m,0.Sm,0.7808m) and the observation point

was at (0.5m,0.5m,l.5288m). Figure 4.19 shows the results

for case 13. The relatively h_gh secondary source strength

required at k=2.0 results from the fact that at k=2.0 the

observation point is near an antinodal location of the

uncontrolled sound field while the secondary source Is near



117

a nodal location of the uncontrolled sound field.

By studying the results of cases 12, 13, and others

not presented here, a general strategy for placement of

secondary sources was developed. For local control it is

important to locate the secondary source(s) such that the

response at the observation point(s) due to the secondary

source(s) is maximum or near maximum for all frequencies

considered. Thls strategy includes the situation where the

secondary source is brought very close to the observation

point such as wlth ear defenders. If the observation point

is at a nodal location of the secondary source modal

pattern for a particular frequency, then infinite secondary

source strength will be required for local control

(uncontrollablllty). In general, If the observation point

Is at a locatlon of

secondary source is at

response, then large

hlgh noise field response and the

a location of low noise field

(not infinite) secondary source

strengths will be required. However, If the secondary

source can effectively excite a mode unexcited by the noise

field which has an antlnode near the observation point,

then it Is irrelevant whether the secondary source is

located near a node of the noise field or not.

The effect of closely coupling the observation point

and the secondary source for a one-polnt local control

scheme was investigated in cases 14, 15, and 16. A single
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observation point was positioned at half the distance (from

the center) to the boundary of a uniformly pulsating 48

sided polyhedron with a surface velocity of 1.0m/s. The

secondary source was located at distances of 0.1m, 0.2m,

and 0.3m away from the observation point for cases 14, 15,

and 16 respectively. The optimal secondary source

strengths are shown in Figure 4.20. Note that no one

particular secondary source position is advantageous for

all frequencies. However, the average normalized optimal

secondary source strengths for cases 14, 15, and 16 are

0.221, 0.350, and 0.471 respectively. Thus, for broadband

purposes, it is advantageous to locate the secondary source

as close as possible to the observation point.

4.2.3 Multiple Secondary Sources

The merits of using multiple secondary sources for

global noise control were investigated. The results of a

case study (case 17) analogous to that of case I, except

that two secondary sources were employed, are presented in

Figures 4.21 and 4.22. The two secondary sources were

positioned at half the distance to the 48 sided polyhedron

boundary and 180 ° apart. Comparing Figures 4.2 and 4.21,

It can be observed that In the lower frequency regime the

two secondary sources provided slightly better attenuation

than the single secondary source. However, for the higher

frequencies the single secondary source gave better
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performance for less required source strength.

Extending the analysis of case 17, a system with four

secondary sources was examined (case 18). The system

conf_guratlon was identical to case I with the exception

that multiple secondary sources were used. The secondary

sources for case 18 were located at (0.25m,0,0),

(0,0.75m,0), (O,-0.Sm,0), and (-0.75m,0,0). The results of

case 18 are presented in Figure 4.23. Comparing Figures

4.2 and 4.23, it can be seen that overall the four

secondary sources did not provide significantly better

performance than the single secondary source. In general,

the combined optimal secondary source strengths of the four

secondary sources were slightly greater than the optimal

source strength of the single secondary source in case 1

(at any particular frequency).

The results of cases I, 17, and 18 suggest that a

s_ngle, optimally located secondary source provides the

best overall performance for global noise control. An

optimally located secondary source is posit_oned such that

the secondary source effectively couples into the dominant

modes of the uncontrolled sound field for all frequencies

at which reduction is desired. These conclusions are only

expected to be valid for cases of simple sound fields where

optimal secondary source locations can be identified.
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4.2.4 Nonsymmetrlc Excitation

An example of a (spherically) nonsymmetrlc excited

sound field is the oscillating 48 sided polyhedron which is

shown in profile in Figure 4.24. The distribution of the

velocity normal to the surface is given by u -u cose where
n x

x is the direction of oscillation. The oscillatory motion

of the polyhedron creates a pressure distribution which is

a function of radial position and angular position, i.e.,

spherically nonsymmetric.

A single secondary source positioned at the center of

the oscillating polyhedron (u =l.0m/s) was found to be
x

completely ineffective for global noise reduction.

However, two secondary sources positioned at (O.01m,0,0)

and (-O.01m,0,0) where found to provide significant global

attenuation at the cost of relatively large secondary

source strengths (case 19). The results of case 19 are

shown in Figures 4.25 and 4.26. As shown in Figure 4.25,

significant global attenuation was only attained in the

narrow-band regions about the natural frequencies of the

enclosure.

In Figure 4.26, note that the optimal solution for the

secondary source strengths is a dipole. The dipole form of

the solution can be explained by examining the radiation

pattern produced by the secondary sources. The radiation
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pattern of a dipole has two lobes along the axis of the

dipole (the X-axls for case 19). The pressure distribution

function of the uncontrolled sound field in case 19 also

has maxima along the X-axls. Hence, the radiation pattern

of the secondary sources took on a form similar to the

uncontrolled sound field pressure distribution. The

radiation pattern of the single secondary source had a

spherically symmetric form and hence was unable to achieve

any attenuation. Likewise, if the two secondary sources

would have been positioned along the Y-axis or Z-axls,

negligible attenuation would have resulted.

To further demonstrate the same concept, two secondary

sources where positioned at (O.01m,0,0) and (-0.Olm,0,0)

inside the uniformly pulsating polyhedron of case i. The

form • of the optimal solution for the two secondary

secondary sources was found to be that of a monopole, as

shown in Figure 4.27. Note, the combined source strengths

of the two secondary sources equals the source strength of

the single secondary source of case 1 (Figure 4.3). Thus,

for a spherically symmetric noise field, a cancellng source

with a spherically symmetric radiation pattern provided

optimal performance.
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4.2.5 Effects Of Passive Noise Treatments

The effects of passive noise treatments at the

enclosure boundaries on active noise controller

requirements and performance were investigated for the

rectangular prism. Passive noise treatments were modeled

using locally reacting, speclf_c acoustic impedance

boundary conditions. Changes in active noise controller

requirements were studied for variations of three passive

noise treatment parameters: the resistive component, the

reactive component, and passive noise treatment surface

area. For cases 20 through 2?, the noise producing

mechanism was a primary source at (0.5m,O.5m,0.25m) with a

volume velocity source strength of 1.0 m3/sec, and a single

secondary source was located at (0.5m,0.5m, l.579m).

Cases 20, 21, 22, and 23 examined the effect of

changes in the reslst_ve component. Case 20 is used as a

reference; all of the enclosure walls were rigid. The wall

at Z=0 was given specific acoustic impedance boundary

conditions of 50+j0, 200+j0, and 350+j0 Pa's/m for cases

21, 22, and 23 respectively. The results of case 20-23 are

shown in Figure 4.28 and 4.29. The frequencies of maximum

attenuation for case 20 are the elgenfrequencies associated

with the (0,0,11, (I,0,0), (0,I,0), (0,0,21, and (1,0,11

modes (see Table 4.1).
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The introduction of the resistive boundary condition

at the wall at Z=0 caused a shift in the eigenfrequencles

of the cavity and hence the frequencies at which maximum

attenuation occurred. As the value of the resistance

increases, the modal response of the cavity becomes

Increasingly damped. Because active noise controllers

function most effectively at the enclosure resonances, the

overall performance of the active noise controller

decreases wlth increasing values of resistance as shown in

Figure 4.28. The average values of attenuation for cases

20, 21, 22, and 23 were 4.85, 3.69, 3.01, and 2.90 dB,

respectively. As shown in Figure 4.29, the increasing

values of the resistive component did not cause significant

Increases in optimal secondary source strength.

To examine the effects that changes in the reactive

component have on active noise controller requirements, the

wall at Z-0 was given impedance boundary conditions of

200-j1500, 200+j0, and 200+J1500 Pa's/m (cases 24, 22, and

25 respectively). The results of cases 22, 24, and 25 are

shown in Figure 4.30 and 4.31. The presence of a reactive

component increased the magnltude of the cavity resonances.

Consequently, the overall performance of the active noise

controller Increased with the addition of a reactive

component. Changes In the sign of the reactive component

altered the eigenfrequencles but had no significant effect
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on the overall active noise controller requirements.

The surface area of the passive noise treatment was

increased by increasing the number of walls with impedance

boundary conditions. An impedance boundary condition of

200+j0 Pa's/m was applied to the walls at Zffi0 for case 22;

Zffi0 and X=0 for case 26; Z-0, X=0, and Xffil.04775m for case

27. The results of cases 22, 26, and 27 are shown in

Figures 4.32 and 4.33. As was the case for the increasing

value of the resistive component, the enclosure response

became increasingly damped as the number of absorbing walls

increased. For more

attenuation was not

frequencies.

than one absorbing wall, significant

possible except at the very low

4.2.6 Conclusions

From the results presented in the previous sections,

several conclusions can be drawn. First, efficient global

noise control Is possible at low frequencies and at the

enclosure resonances. Second, for broadband global noise

control, the secondary source(s) should be positioned at

antlnodal locations of all enclosure modes. Third, if

global control of a compact noise source is sought, the

secondary source(s) should be located as close as possible

to the compact noise source. However, if the noise source

is distributed, maximum global noise control is attained
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when the secondary source is at an antlnodal location, and

it is irrelevant if the antinodal location is remote or

not. Fourth, for local control, the secondary source(s)

should be located such that the response at the observation

point(s) due to the secondary sources is large. Thus, for

local control it is not always advantageous to locate the

secondary source at an

uncontrolled sound field.

control, it is beneficial

antinodal location of the

Fifth, for broadband local

to position the secondary

source(s) close to the observation point(s) to achieve

lower required secondary source strength(s). Sixth, for

low modal density acoustic fields, effective global control

can be achieved using only one or few judiciously placed

secondary sources. Additional secondary sources do not

provide any significant improvement in the performance.

Lastly, resistive passive noise treatments cause a decrease

in the effectiveness of active noise controllers, but the

total, combined performance

treatments and the active noise

the same.

due to the

controller

passive noise

remains about

Although some of the results presented here could have

been obtained with an analytical procedure, the numerical

method provides great versatility. Changes in system

parameters such as enclosure shape, secondary source

positioning, and boundary conditions are easily
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accommodated with the

method becomes necessary

nongenerallzed shape,

damping. Although some

documented in

demonstrate the

the literature,

valld_ty of the

numerical procedure. A numerical

when the enclosure has a complex

distributed sources, or d_strlbuted

of the results presented here are

they were presented to

method.
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Figure 4.1 - System Schematic For The Active Control Of

Sound Fields With Complete System Description
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CHAPTER 5

AN OPTIMAL ACTIVE NOISE CONTROLLER FOR FREE

FIELD RADIATION

Most of the literature on

free field

procedures

[30,40], or

active noise control for

radiation consists either of experimental

[42,43], studies of compact noise sources

studies where the noise field is deduced by

field point measurements and thus no information about the

noise source is required [37]. Very little attention has

been given to the general problem of analyzing and

minimizing the total sound power of a noise field produced

by a generalized distributed source.

The system investigated in this chapter is comprised

of two components: a distributed noise source with a known

time harmonic surface velocity distribution and an array of

canceling (secondary) sources positioned about the noise

source,

known,

form.

The geometrical shape of the noise source must be

but the shape Is not restricted to any particular

The relative positions of the noise source and the
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secondary sources are also assumed known,

5.1 Problem Formulation

In the

formulation of an optimal active noise

presented. The formulation for an optimal

controller is derived using the IBEM formulation.

subsequent formulation, capital letters will denote

quantities.

following sections, the definition and

5.1.1

controller are

active noise

In the

matrix

The Control Objective Function

The control objective chosen for the research

presented here is to minimize the total sound power in the

free field. A near-field technique for calculating the

sound power output of a source was developed by Levine

[38]. Levine's technique is based on an acoustic energy

balance at the source, and thus, the need to integrate the

far-fleld intensity in order to calculate the power output

of a source Is avoided. The technique developed by Levlne

was applied by Nelson et al. to time harmonic monopole

sources [37]. The resulting expression for the source

power output, w, of a monopole with a time harmonic volume

velocity source strength q is

1 *

w - _ Re(Ptotq}__ (5.I)

where Ptot is the total sound pressure at the source due to
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the source and any incident sound field, and the *

superscript denotes the complex conjugate. The expression

Re{} is an operator slgnJfylng "the real part of {}."

(consistent with

surface velocity.

distributed noise

In order to use equation 5.1 to calculate the sound

power output of a distributed noise source, the noise

source is modeled by discretizlng the noise source surface

the IBEM) into elements with constant

The dlscretized elements of the

source may be assumed to be individual

monopole sources characterized by a volume velocity source

strength. The volume velocity source strength of an

element is given by

= us (5.2)
qb

where u is the magnitude of the normal surface velocity of

the element, and s is the surface area of the element.

Applying equation 5.1, the control objective

was formulated as

function

II = T Re{p Su n} + _ Re{i)s_q.s} (5.3)

where _s is a column vector of the complex pressures at the

secondary sources, _s is a column vector of the complex

volume velocity secondary source strengths, _n is a column

vector of the complex pressures at the discretlzed elements

of the noise source boundary, [S] is a diagonal matrix
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containing the areas of the noise source surface elements,

and u is the column vector containing the known velocities
m n

of the surface elements. The H superscript denotes the

hermitlan transpose.

Alternatively, the power radiated from a distributed

source could be found be integrating the intensity over the

surface as

1 l
w - f _ Re{p'u} dS - _ Re{pHsu} (5.4)

s

The integral in equation 5.4 was evaluated by using the

fact that the velocity and pressure are constant over each

surface element.

5.1.2 IBEM Formulation Of The Control Objective Function

The pressures at the secondary sources

equation 3.38:

Because there are no

Ps " D_ + E_, s

are given by

(5.5)

primary sources formulated in the

problem, the column vector _ in equation 3.38 contains only

secondary source strengths, and thus, @ will be denoted by

• The (i,i) element of [E] represents the pressure at
w s

th th
the i secondary source due to the i secondary source.

Thus, the diagonal of [El is comprised of singular
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functions (refer to equation 3.39b).

The diagonal elements of [E] are evaluated by taking

the limit of the fundamental pressure solution as r+0:

lira e -jkr llm [cos kr sin kr.lEii = r+0 r = r÷0 r J r
(5.6)

Applying L'Hospltal's rule to equation 5.6 gives

Eii = ® - jk. Note that the imaginary component of Eii is

finite.

The pressures at the dlscretlzed elements of the noise

source boundary are also derived from equation 3.38:

_n = D'__ + Z'qb s (5.7)

The fictitious source strength distribution, _, is

determined from the known boundary conditions, namely, the

surface normal velocities by equation 3.25

u - Fa + G+ (5.8)
--n -- --s

Thus, solving for the fictitious source strengths gives

-I
a " F (u

i n

(5.9)

Substituting the fictitious

equation 5.9 into the pressure

gives the pressures in terms of

source strengths from

equations, 5.5 and 5.7,

surface velocities and

secondary source strengths:
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-I -I

Ps = DF --nU + (E - DF G)_s- (5.10)

and

Pn D'F-I -IG= --nU + (E" - D'F )+s-- (5.11)

The secondary source strengths are related

velocity secondary source strengths by

to the volume

jkp c
i O

_s 4_ as = Cs_s (5.12)

By substituting the pressure and source strength

relationships from equations 5.10, 5.11, and 5.12 into

equation 5.3 and using the identity Re{_}= (_+_ ) where

is any complex scalar, the control objective function can

be written as

1 H _ H H uHH = _(_sA_s + _ B_n + _n B _s + --nCU--n)
(5.13)

where

-I -I ]HA i c (E - DF G) + [c (E - DF G)
$ $

-I -1 G HB = DF + [c (g" - D'F )] S
s

-I -I H
C = SD'F + (D'F ) S

(5.14a)

(5.14b)

(5.14c)

1 H

Note that the uncontrolled free field power is _UnCU n.

In equation 5.14a, note that [El is multiplied by the

purely imaginary constant c . Thus, after [E] is
S

multiplied by c , the infinite, real components of the
s

diagonal terms of [El become the imaginary components of
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the diagonal terms. When [A] is computed, the hermitian

-I

transpose of the matrix c (E - DF G) is added to itself.
S

Consequently, the (infinite) _maglnary components along the

diagonal cancel, and thus, the diagonal of [A] is real and

finite.

5.1.3 An Optimal Controller

The control objective function in equation 5.13 is a

real, positive definite, quadratic function of the volume

velocity secondary source strengths. As stated in chapter

4, such a function has a single unique global minimum.

Thus, there is a unique combination of secondary source

strengths which minimize the total sound power radiated

into the free field by the noise source and secondary

sources. Utilizing equation 4.12, the minimum value of the

control objective function occurs when

A_s + BU_n - 0
(5.15)

Thusp the optimal secondary source strengths are given by

o . (5.16)
_s -A-IB_n

The corresponding minimum value of the control objective

function is

H H o
HCu + u B _.qs

OO (5.17)
N = _(qs=_s ) " Un -n -n

The attenuation due to the optimal active noise controller
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is computed from

n

ATN = I0 log-_ P-_

Hu

where ATN denotes attenuation and H =H(_sffi0).pp

5.2 Case Study Results

(5.18)

In this section, the results from a number of active

noise control system configurations are presented. For all

case studies, the value of po c was 415.0 Pa's/m. The

optimal controller was analyzed for two differently shaped

noise producing mechanisms. The first noise producing

mechanism is a pulsating sphere, 1.0m in radius, with a

time harmonic surface velocity of 1.0m/s. The pulsating

sphere is centered about the origin. The characteristic

dimension, a, of the sphere is 1.0m. The sphere was

modeled using 48 triangular superparametrlc elements.

The second noise producing mechanism is a cylindrical

shell which is shown in Figure 5.1. The characteristic

dimension, a, of the shell is O.Im. One face of the shell

was assigned a velocity distribution given by the zero

order Bessel function of the first kind, J (r), such that
O

J (O)=l.0m/s, and J (a) corresponded to the first zero of
O o

the Bessel function [57]. The other sides of the shell

were rigid. Such a model and velocity distribution were

chosen to approximate the first mode of vibration of the
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top of a refrigerant compressor shell. The shell was

modeled using 96 triangular superparametrlc boundary

elements.

In some Instances, due to numerical integration error,

analysis of the optimal controller could not be performed

for the very low frequency regime [47]. The numerical

Integration error increased with decreasing wavenumber,

Increasing proximity of the secondary source(s) to the

noise source, or increasing number of secondary sources.

Consequently, the lowest value of frequency for which

results are reported is not the same for all case studies.

Cases I, II, and III examined changes in controller

performance as a function of the relative placement of a

single secondary source. Using the cylindrical shell

model, the single secondary source was positioned at

(0,O,0.15m), (0,0,0.35m), and (0,0,1.05m) for cases I, II,

and III respectively. Hence, the distance between the

noise source and the secondary source, i, is 0.1m, 0.3m,

and 1.0m for cases I, If, and III respectively. The active

noise controller performance Is shown in Figure 5.2 while

the normalized optimal secondary source strengths are shown

in Figure 5.3 for cases I, If, and III. The advantage of

closely coupling the secondary source with the noise source

IsapparentinFigureS2 Notethatfor (ka>01 ),no
significant attenuation is possible [30]. In Figure 5.3,
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It can be seen that In the low frequency limit, the optimal

secondary source forms a dipole with the noise source.

Also note that the relative phase of the secondary source

is either 0 ° (In-phase) or 180 ° (out-of-phase).

Cases IV, V, and VI also investigated the placement of

a single secondary source using the shell model. For cases

IV, V, and VI, the secondary source was located to the side

of the shell at (0.15m,0,0), (0.35m,0,0), and (l.05m,0,0)

respectively. Thus, the values for 1 are 0.05m, 0.25m, and

0.95m for cases IV, V, and VI respectively. The results of

cases IV, V, and VI are shown in Figures 5.4 and 5.5. By

comparing Figures 5.2 and 5.4, it can be seen that for a

remotely located secondary source (cases III and VI), the

directional location of the secondary source did not affect

the performance. The performance Is relatively poor In

both cases except at very low frequencies. However, for a

closely coupled secondary source (cases I and IV), the

directional location affected the performance. The

performance improved, particularly at the higher

frequencies when the secondary source was located in front

of the noise producing face.

Cases Vll, Vlll, IX, and X investigated changes in

active noise controller performance for an increasing

number of actuators. The pulsating sphere, which produces

a spherically symmetric noise fJeld, was employed for cases
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VII through X. The locations and

secondary sources for cases VII

Table 5.1.

utilization of the

through X are given in

Table 5.1 - Secondary Source Data For Cases VII-X

Source No.

2

3

4

5

Location (m)

(+2,0,0)

(-2,0,0)

(0,+2,0)

(0,-2,0)

(0,0,+2)

Cases Used

L

VII VIII IX X

VIII IX X

IX X

IX X

X

6 (0,0,-2) X

The results of cases VII through X are given in Figure 5.6.

The advantage

frequency regime

(ka>_), where

sphere to the

attenuation is

sources.

of multiple secondary sources in the low

k

is apparent in Figure 5.6. For i>_

i is the distance from the center of the

secondary source(s), no significant

possible even with multiple secondary

For cases VII through X, l=2.0m.

The maximum, combined, normalized, optimal secondary

source strengths for cases VII, VIII, IX, and X were 1.0,

I.I, 1.25 and 2.2 respectively. Hence, the improvement in

attenuation is

secondary source

arrangement of

case VIII were

accompanied by an Increase in required

strength. Due to the symmetrical

the secondary sources, sources 1 and 2 in

equal in magnitude and phase for all
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frequencies considered. Likewise, for cases IX and X, at

every frequency all secondary sources were equal In

magnitude and phase.

Cases XI, XII, XIII, and XIV examined a symmetric

dlstr_butlon of multiple secondary sources about the

cylindrical shell. The placement and utilization of the

secondary sources for cases XI through XIV are given in

Table 5.2.

Table 5.2 - Secondary Source Data For Cases XI-XIV

Source No. Location (m)

1

2

3

5

6

(0,0,+0.4)

(0,0,-0.4)

(0,+0.4,0)

(0,-0.4,0)

(+0.4,0,0)

(-0.4,'0,0)

Cases Used

xI x£1 xIii Ely

xz£ xIii xlv

XII£ XIV

Xlll XIV

' x_v

XlV

The results of cases Xl through XIV are shown in

Figure 5.7. As was shown by cases Vl£ through X,

additional secondary sources improve the performance only

In the low frequency regime. The maximum, combined,

normalized, optimal secondary source strengths for cases

XI, XII, XIII, and XIV were 1.0, 1.21, 1.68, and 4.08

respectively. Thus, larger secondary source strengths are

required to attain the increase In performance. For cases

XII through XIV, sources 1 and 2 were not equal in
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magnitude or phase. For case XIII, due to symmetry,

sources 3 and 4 were equal in modulus and phase. Likewise,

in case XIV, the sources around the perimeter of the shell

(3, 4, 5, and 6) were all equal in magnitude and phase.

Cases XV, XVI, XVII, and XVIII investigated an

asymmetric distribution of multiple secondary sources about

the cylindrical shell. The secondary sources were

positioned adjacent to the no_se producing face of the

shell. All secondary sources were located such that they

were 0.4m away from the origin. The cases for which each

source was employed and the source locations are given in

Table 5.3.

Table 5.3 - Secondary Source Data For Cases XV-XVIII

Source No.

• I

6

Location (m) Cases Used

i

(0,-0.28284,0.28284) XV XVl XVII XVIII

(0,+0.218284,0.28284) _ XVI xvlfXVlll

(-0.2 ,+0. 282S4,0. _)

(+0.2,-0.28284,0.2)

(+d,2,+O.28284,0.2Y ....

(-0.2,-0.28284,0.2) "

XVll XVIII

XVll XVIII
L

XVIII

XVIII

The results of case

Figure 5.8.

XV through XVIII are presented in

Several conclusions can be drawn by comparing Figures

5.7 and 5.8. First, note that the symmetrically

distributed secondary sources provided better performance
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in the

produced

is not

noise source is small

noise source is

spherically

the higher

the noise source

distribution of

performance than

low frequency regime. The larger attenuation

by the symmetric distribution of secondary sources

surprising because at the lower frequencies, the

relative to a wavelength. Hence, the

nondirectional and will produce a

symmetric pressure distribution. However, at

frequencies (around kaffil.4 for example) where

has some directlvlty, the asymmetric

secondary sources provided slightly better

the symmetric distribution. Also note

that the additional symmetrically

did not improve the at

ka=l.4. However,

around ka=l.4 was

located secondary

placed secondary sources

performance the local maximum at

a slight improvement in the performance

attained with additional asymmetrically

SOUrCeS.

5.3 Conclusions

In summary, for

radiated sound power,

k

be located within

Additional secondary

provided that they are

the noise source is

noise controller

increased reduction of the total

all secondary sources employed should

of the noise producing mechanism.

sources greatly improve attenuation

located within the _ criterion. If

directional, an improvement in active

performance is attained when the secondary
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sources are located about the pressure lobes of

SOurCe.

the noise

The formulation using the IBEM is relatively

straightforward. Such a formulation which minimizes sound

power could be used in cavities except that reducing power

does not necessarily mean that the potential energy in the

cavlty is reduced. For example, sound power is zero in an

enclosure wlth no absorption, but the potential energy may

be high or low. When using the IBEM formulation, care must

be taken to avoid the uniqueness problem d_scussed in

section 3.3.1.
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X
Y

O.05m

Figure 5.1 - Geometrical Description Of Cylindrical
Model

Shell
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CHAPTER 6

AN OPTIMAL ACTIVE NOISE CONTROLLER FOR ENCLOSED

SOUND FIELDS WITH INCOMPLETE SYSTEM DESCRIPTION

The active noise controller formulated in chapter 4

assumed that a complete boundary description of the

enclosure was known. The formulation provided an optimal

transfer function between the noise source strengths and

the secondary source strengths. However, in some

c_rcumstances, a complete description of the noise sources

may not be known. If exact knowledge about the strengths

of the noise sources is unobtainable, an array of detector

microphones is usually employed to sense the noise field

and provide input to the active noise controller. In

application, it may not be possible to measure (for input

to the controller) all the boundary conditions. In

acoustics, it is easier to measure pressure in the field

than many boundary conditions. The formulation of chapter

4 Is extended in this chapter to include active noise

control systems with detector inputs. As was the case for

chapter 4, the enclosed sound field is assumed to be time



184

harmonic, and the boundary geometry is known.

6.1 Problem Formulation

A schematic of the overall system formulated in this

section is shown in Figure 6.1. The overall system is

comprised of five components: the enclosure boundary, point

noise (primary) source(s), controllable point (secondary)

source(s), observation point(s), and detector locatlon(s).

With a couple of exceptions, the first four components

listed are as described in section 4.1.1. The first

exception is that the strengths of the primary sources are

assumed here to be unknown. The second exception is that

the enclosure boundary is divided into "active" sections

and "passive" sections. Active sections are noise

producing whereas passive sections do not contribute to the

enclosed sound field. The boundary condition values of the

active boundary elements are considered to be unknown.

Detector locations are sites within the enclosure

where the sound field is to be measured. For the current

formulation, the detectors are assumed to be microphones,

and hence, the detected parameter is acoustic pressure.

The locations of the detectors must be known.

Given the specifications of the problem, the objective

is to determine an optimal transfer function matrix, [H°],

such that the acoustic response is minimized at the
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observation points. The optimal transfer function matrix

is defined as that which produces optimal secondary source

strengths given the detector inputs. The optimal secondary

source strengths are defined as those which minimize a

weighted sum of the magnitudes of the pressures squared at

the observation points. Consequently, the control

is identical to the one given inobjective function

equation 4.1:

n
cp

n = z ]pi[2wl (6.1)

i=l

The optimal transfer function is determined by minimizing H

with respect to the secondary source strengths. In the

subsequent formulation, capital letters denote matrix

quantities.

6.1.1 IBEM Formulation Of The Control Objective Function

If the acoustic pressure at the observation points is

written in complex form, the control objective function can

be rewritten as

H = _Hw_ (6.2)

where [W] is a n x n diagonal matrix with the values of
cp cp

the weighting function on the diagonal, and _ is a column

vector of the pressures at the observation points. The H
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superscript denotes the hermltlan transpose.

The pressures at the observation points are

equation 4.4:

given by

= -- Ep + E _ (6.3)D_ + _p s--s

Likewise, the pressures at the detector locations are given

by equation 4.4:

o #,

Pd = D'_ + Zp_p + Es_ s (6.4)

From equation 4.7, _ is found as

-1

= A (_= - Cp_p - Cs_ s)
(6.5)

Because the enclosure boundary is

active portion and a passive portion,

composed of an

-I
and [A] are

partitioned as

-- a p

-I

A Cs__s (6.6)

A passive boundary condition is defined as that for which

-0. The three
i

rigid wall (u=0),

boundary conditions for which _ =0 are
i

pressure release (p-0), and specific

acoustic impedance. All other boundary conditions are

classified as active. Employing the

equation 6.6 can be rewritten as

fact that • -_,
--p
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- A:I_ - A-Ic _ A -I-- --a p_p C s_ s
(6.7)

Combining the unknown primary source strengths with the

unknown active boundary condition values gives

I_il 1 C s_ s
" [ A-I l -A-1Cp I - A--- a

(6.8)

For notational simplicity, equation 6.8 is rewritten as

o ffi Fvl -A-Ic _
-- -- S(_S

(6.9)

where

F " [A -1 I -A-IC ] (6.10a)
a p

and

ffi (6.10b)

Through a similar analysis, equations 6.3 and 6.4 can

be rewritten as

-I

p_ = (DF + F')_ + (E - DA C )+s (6.11)-- S S --

and

P-d = (D'F + F'')_ + (E

" -I

- D'A C )d_s (6.12)8 S --

where
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F" ffi [0 1 E ] (6.13a1
p.

F'" - [0 1 Z ] (6.13b)
P

Using equation 6.12, the unknown noise source values are

determined from the pressures at the detector locations as

-I -I "

- (D'F + F'') [Pd + (D'A C s - Es)_s] (6.141

Implicit in equation

number of

number of

stipulation

6.14 is the stipulation that the

measurement locations must equal the sum total

active elements and primary sources. This

is necessary so that the matrix inverted in

equation 6.14 is square. However, the problem can be

overdetermlned by employing more measurement points than

unknown noise sources. Then to solve equation 6.12 for the

unknown noise source values, a least squares technique

could be used. Using a least squares method, the unknown

noise sources are found as

H -I -1 - E )+s ] (6.151- (TndTnd) Tnd[_d + (D'A C s s --

where T _D'F+F''. For the subsequent development,
nd

equation 6.14 will be used although equation 6.15 could

have been used instead.

The unknown noise source values are eliminated from

equation 6.11 by substituting equation 6.14 into equation

6.11. The resulting expression is
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where

= Rp d + T__s (6.16)

-I
R - (DF + F')(D'F + F'')

-1 " -1
T = R(D'A C - E ) + E - DA C

s s s s

By substituting equation 6.16 into

control objective function is obtained:

H H

H = _s T WT_s

(6.17)

(6.18)

equation 6.2, the

H H H H H H

+ _d R WT__s + _s T WRPd + _d R WRPd (6.19)

The uncontrolled, summed acoustic

observation points is given by _RHWR_d .

6.1.2 An Optimal Controller

response at the

there is a unique transfer function matrix between the

pressures at the detectors and the secondary source

strengths such that the control objective function is

minimized. Utilizing equation 4.12, the minimum value of

the control objective function is found to occur when

the secondary source

unique combination of

minimize the control

strengths. Therefore, there is a

secondary source strengths which

objective function. Consequently,

As was the case for the control objective function of

chapter 4, the control objective function given in equation

6.19 is a real, positive definite, quadratic function of
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H H
T WT_s- + T WRpd_ = 0 (6.20)

Solving for the unknown secondary source strengths which

minimize H gives

o -I H
_s " -[THwTI T WR_d (6.21)

o

Converting
S

to volume velocity units using

o 4= o

_s " jkp c _s (6.22)
o

gives

o 4= -i H

= J,--_ [THwT] T WRpd_ (6.23)qs c

Therefore, the optimal transfer function matrix between the

pressures at the detectors and the volume velocity

secondary source strengths is

o 4= THwT]-I H
= jk- oc [ r WR

(6.24)

6.1.3 Stability

A generally recognized problem of active noise

controllers is the instability caused by the positive

acoustical feedback between the canceling sources and the

detector microphones. Insight Into the stability of the

active noise control system formulated in this chapter is

obtained by rewriting equations 6.11 and 6.12 as
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- T _ + Tso_s (6.25)no m

and

_d ffi Tnd_ + Tsd_s
(6.26)

where

T ffiDF + F" (6.27a)
no

kPoC -I c
Tso = j--_-_-- (E s - DA s ) (6.27b)

T - D'F + F'" (6.27c)
nd

kp c .
o -I

Tsd = j--_- (E s - D'A C s) (6.27d)

Equations 6.23, 6.25, and 6.26 are represented in block

diagram form in Figure 6.2. Note the presence of the

positive acoustic feedback loop between the secondary

sources and the detectors.

The characteristic

determine stability,

by

equation, which is analyzed to

of the system in Figure 6.2 is given

O

I - Tsd H = [0] (6.28)

where [I] is the identity matrix, and [0] is

matrix. A stability matrix, [G], is defined as

the null
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G = -Tsd H° (6.29)

The stability of the active noise control system can

determined by analyzing the characteristic equation

be

I + G - [0] (6.30)

using a frequency domain technique such as a Bode diagram

or the Nyqu_st criterion. For the case studies to be

presented, Bode diagrams were used to determine stability.

Assuming G is a scalar transfer function (for simplicity),

o
stability is determined by examining the 0 dB and -180

crossings. If

when the phase

unstable.

the gain of G (in dB) is greater than zero

O

crosses the -180 axis, the system is

6.1.4 ObservabIlity And Controllability

0bservability is defined for the purposes of thls

research as the ability of the detectors to deduce the

noise field. The influence of the no_se sources on the

pressure at the detector locations is given by [T]nd. From

equation 6.14, it can be seen that it is necessary for

[T]nd to be Invertlble. If [T]nd is square (as required in

equation 6.14), then the rank of [T]nd must equal the

number of unknown noise sources (or detectors) for the

inverse of [T] to exist. If the problem is
nd

H

overdetermlned, then the rank of TndTnd in equation 6.15
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must be equal to the number of unknown noise

H -I

[TndTnd] to exist. Thus, the system is
H

observable if the rank of [T]nd (or TndTnd)

number of unknown noise sources.

sources for

completely

equals the

Controllability is defined for the purposes of this

research as the ability of the secondary sources to

influence the acoustic response at the observation points.

Controllability at the i th observation point is determined

by examining the inner product of the i th row of [T] with
SO

o th
as. If the inner product is zero, the pressure at the i

observation point Is uncontrollable with the current

arrangement of secondary sources. Thus,

O

controllability, as must first be computed

to determine

from equation

6.23.

6.2 Case Study Results

Although the formulation of the previous section was

generalized for a multl-parameter system, all case studies

presented In this section consider a scalar system: one

unknown noise source, one detector location, one

O

observation point, and one secondary source. Therefore, H

and G are scalar transfer functions. All the case studies

presented _n thls section were observable and controllable.

The value of p c for all cases presented is 415.0 Pa's/m.
o
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To obtain the impulse response

optimal frequency domain solution

time domain using an inverse Fourier

of the system, the

Is transformed to the

transform. In the

frequency domain, the optimal secondary source strength is

given by

O

Qs(a}) " H°(a))Pd(_) (6.31)

°(t), a
To obtain the time domain solution of qs

is used [58]:

convolution

t

°(t) " f h°(t-_)pd(_) d%qs
0

0

where h (t) is given by the inverse Fourier

the controller transfer function [59]:

(6.32)

transform of

w

I f Ho(_)eJ_th°(t) = 2-_ de (6.33)

If pd(%) is an impulse function of unit amplitude, then the

tlme domain solution of the optimal secondary source

strength is given by

o h oq (t) - (t) (6.34)
S

Therefore, the impulse response of the system is given by

O

the inverse Fourier transform of H (_). The inverse

Fourier transform of H°(_) was calculated using an inverse

fast Fourier transform (IFFT) procedure given by Ramtrez

[6o]
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N-I

hO(n) ffi1 E B°(k)e j2_kn/N
N k= 0

where N is the total number of data samples.

(6.35)

The system analyzed in case i is depicted in Figure

6.3. All of the enclosure walls are rigid. The enclosed

sound field is excited by the primary source of unknown

strength. The conjugate symmetric expansion of the

frequency domaJn solution of H°(_) and the impulse response

function of the system for case i are shown in Figure 6.4.

Note that the impulse response function of the system is

non-convergent, and the system appears to be unstable. A

Bode diagram representation of G is presented in Figure

6.5. Careful examination of the Bode diagram reveals that

the system has a negative gain margin, and hence, the

system is unstable.

Because the enclosure was dlscretlzed using 80

elements, the accuracy of the results for H°(_) degrade for

k greater than approximately 6.0. Therefore, the frequency

o
domain spectrum of H (_) was smoothly diminished to zero

after k=5.0. To obtain higher resolution in the time

domain, the zero-valued frequency data for H°(_) was not

removed from the frequency spectrum. The function used to

o
diminish the frequency domain solution of H (_) is given by

1 w-1715

fz(_) - _[I + cos(l?_ 5 x)] (6.36)
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for 1715.0 ¢ _ ¢ 1886.5. In addition, f (_)-0 for
z

> 1886.5 rad/sec, and f (_)=1 for _ < 1715.0 rad/sec.
z

Because there were no energy absorbing mechanisms in

the system of case t, It is not surprising that the system

was unstable. The stability of the system should improve

with the addition of an energy absorbing mechanism. Case

ii is identical to case i except that the wall at Z-0 was

given an infinite termination impedance boundary condition

(zffip c). The results of case ti are shown in Figures 6.6
o

and 6.7. Note that the impulse response function

converged, and the Bode diagram for case.it correspondingly

predicts a stable system. However, there appears to be a

low frequency noncausal component.

The low frequency noncausal component of the impulse

response function for case iI results from the large peak

Jn the imaginary part of H°(_) at 34.3 rad/sec. Because

the accuracy of the IBEM Is poor for very low frequency

analysis of cavity problems and such very low frequencies

are below the audible range, the frequency domain spectrum

of H°(_) was multiplied by a "window"

frequency results for H°(w) were

Furthermore, such a windowing of

such that the low

diminished in value.

H°(_) is reasonable

because active noise controllers are unable to operate at

very low frequencies due to hardware limitations.
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The window which was chosen

definition of a Hannlng window

function of frequency is given by

1 2_n

w(n) - - cos( - _1)l

where

was obtained from the

[61]. The window as a

active noise control system.

N-I
; 0 ¢ n ¢ X (6.37)

The quantity A_ is the discrete frequency step size, and _h

Js the frequency at which W(n)-l. For frequencies greater

than _h ( n> ), W(n)=l. The frequency domain spectrum

of H°(_) was windowed before it was conjugate symmetrically

expanded.

O

The conjugate symmetric expansion of It (_)W(_) and the

corresponding IFFT for case ii are shown in Figure 6.8.

For the results shown in Figure 6.8, the value of _h was

171.5 rad/sec (27 Hz). There is still a small low

frequency component apparent in Figure 6.8. By increasing

the window length, the low frequency component is

diminished further as shown in Figure 6.9. For the results

shown in Figure 6.9, _h-514.5 rad/sec (82 llz).

Case iii provided insight into a free field analysis

of an Case ill is identical

W

n = A"-_ (6.38a)

h
N = 2 _ + 1 (6.38b)
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to case I except that the enclosure boundary was completely

removed from the problem. The results of case ill are

displayed in Figures 6.10 and 6.11. The Bode diagram In

Figure 6.11 predicts an extremely stable system. The spike

In the system impulse response function occurs at

t-3.55msec. The discrete time step of the data In Figure

6.10b Is 0.71msec. If an impulse is detected at t=0, it

will arrive at at the observation point at

1.3m
t - = 3.79 msec

343.0m/sec

Because the secondary source Is 0.1m away from the

observation point, it has to emit an anti-phase pulse at

O.Im

t = 343.0m/sec = 0.29 msec

before the detected pulse arrives at the observation point.

Therefore, the secondary source should emit the canceling

pulse at t=3.79msec - 0.29msec - 3.50msec. Thus, there is

good agreement between the expected solution (t-3.50msec)

and the numerically generated solution (t-3.55msec).

As was the situation for case ii, the Impulse response

function contains a very low frequency noncausal component.

However, the system analyzed in case ill should be causal.

The low frequency noncausal component Is caused by the fact

that in the low frequency limit, the imaginary part of

H°(_) approaches Infinity. The imaginary part of H°(_)
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approaches infinity because the pressure at the detector is

in the low frequency limit while Q_(_)approaching zero

remains finite and nonzero. As was done for case ii, the

low frequency noncausal component can be diminished by

using the "Hannlng" window. The result of H°(_)W(_) for

_hffi171.5 rad/sec and the corresponding IFFT are shown in

Figure 6.12. As the window length is Increased, the

impulse response function approaches the expected solution

of a single Impulse at tf3.50msec.

6.3 Conclusions

The formulation presented in thls chapter demonstrates

that the IBEM Is capable of providing insight into such

critical Issues as stability, observability, and

controllability. Although the implications of

observabJlity and controllab_lity were not Investigated in

the case studies presented, the possibility of doing so is

provided wlth

straightforward.

the importance of

stability.

components

diminished

spectrum.

damping in

It was also found

of the Impulse

by windowing the

the formulation and is relatively

The case studies presented demonstrated

the system to help ensure

that low frequency noncausal

response function can be

corresponding frequency domain
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The objective of the research presented in this thesis

was to develop a numerical

evaluation of an optimal active

generalized acoustic system. Such a

technique is necessary for analysis

with irregularly shaped boundaries,

sources, absorption, and consequently

The numerical technique chosen was an

element method. The indirect boundary

proved to be reasonably accurate,

efficient, and versatile.

analysis method for the

noise controller for the

generalized numerical

of acoustic systems

irregular distributed

complex sound fields.

Indirect boundary

element method

computationally

Using the

formulations

derived.

transfer

strength and

of

indirect boundary element

an optimal active noise

first formulation providedThe

function matrix between

the secondary source

method, three

controller were

an optimal

a known noise source

strength(s) for the
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interior problem. The optimal transfer function was

obtained by minimizing the acoustic pressure at a number of

discrete interior locations. The first formulation

provided insight into the controllability and performance

of the system. The second formulation provided an optimal

transfer function between a known noise source strength and

the secondary source strength(s) for the exterior problem.

The optimal solution was determined by mJnlmlzlng the total

sound power radiated into the free field. The third

formulation provided an optimal transfer function between

the pressures at detector locations and the secondary

source strength(s) for the interior problem. The optimal

transfer function was obtained by minimizing the acoustic

pressure at a number of discrete interior

third formulation provided

controllability, stability, and

system.

locations. The

information on the

observabillty of the

For all three formulations, the resulting control

objective function was a real, positive definite, quadratic

function of the secondary source strength(s). Thus, it is

possible to attain a unique global minimum of the control

objective function. For interior problems, it was found

that an actuator is not necessarily needed for every mode

of the enclosure to achieve a reduction. However, the

global minimum attained with only a few actuators usually
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does not have a zero value. Theoretically, complete,

global attenuation of an enclosed noise field is possible

if one properly employs an actuator for every enclosure

mode. However, due to modal spill-over and the fact that

there are an infinite number of enclosure modes, complete,

global attenuation would require an infinite number of

actuators in theory. In practice, a very large number of

actuators would be needed for such a modal control strategy

because most real_stlc cavities have high modal density

beyond the frequency region of the first ten modes or so.

From the case studies presented, a number

conclusions can be drawn.

of general

- For enclosed sound fields, active noise control is

effective at very low frequencies and at the enclosure

resonances.

- The strategies for optimal active noise control in

cavities are different for global and local control.

For global control Jt is important to locate the

secondary source(s) at the antlnodal locations of the

uncontrolled enclosure response. For local control it

is important to locate the secondary source(s) such

that the response at the observation polnt(s) due to

the secondary source(s) is high.
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- For local or global control _n lightly damped

enclosures, the active noise control system is likely

to be unstable.

- For free field power radiation, effective active noise

control is only attained when the secondary sources

are located within a half wavelength of the noise

producing mechanism. Additional secondary sources

greatly Improve the performance provided they are

located within a half wavelength of the no_se source.

- It is d_fflcult to develop general guidelines for

active noise controllers. Each application is unique.

Thus, a versatile design analysls tool, such as the

one presented here, is attractive.

- Analysis of optimal active noise controllers using a

numerical procedure proved to be straightforward and

versatile. Changes in boundary geometry, boundary

conditions, source quantity and locations were easily

implemented by changing input data.

7.2 Recommendations

the

most

element

Although the linear superparametric elements used for

current research proved to be reasonably accurate for

circumstances, a more sophisticated higher order

m_ght be useful when accurate modeling of curved
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boundary

sophisticated

requirements, it

are desired for

geometries is needed. Because a more

element would increase computational

should only be used when accurate results

a specific application.

The control

thesis are

situations.

formulated

objective functions formulated In thls

not necessarily the only choices for all

For example, the control objective function

in chapters 4 and 6 dld not consider the

magnitudes of the secondary source strengths. Thus, in

some circumstances the optimal solution gave secondary

source strength magnitudes approaching infinity. A control

objective function of the form

H H
= + (7.1)

rl p Wpp qsWsqs

may be more practical. Due to the flexibility

indirect boundary element method, changing the

objective function only requires minor restructuring

optimal active noise controller computer code.

of the

control

of the

An approach to active

formulated in thls thesis

of the enclosure boundary

actuator In this approach would most

an array of shakers

this approach the

partitioned into a

noise control which was not

is that of controlling a portion

to achieve cancellation. The

likely be a shaker or

attached to the boundary. To formulate

boundary condition vector (_) would be

controllable part, a , and an
--C
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uncontrollable (noise) part, _ . The resulting control
_UC

objective function would then be minimized wlth respect to

_s and _c"
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